Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
THI MIEU NGUYEN

Cho hai số nguyên tố cùng nhau a, b. Chứng minh rằng ab và a + b cũng là hai số
nguyên tố cùng nhau.

Buồn vì chưa có điểm sp
24 tháng 9 2021 lúc 8:47

 Giải

Giả sử d là ước nguyên tố của ab và a+b.

=> ab chia hết cho d và a+b chia hết cho d.

Vì ab chia hết cho d => a chia hết cho d và b chia hết cho d (Vì d là số nguyên tố)

Do vai trò của a và b bình đẳng nên:

Giả sử: a chia hết cho d => b chia hết cho d (vì a+b chia hết cho d)

=> d thuộc ƯC(a;b). Mà ƯCLN(a,b)=1

=> d=1(trái với d là số nguyên tố)

Do đó ab và a+b không thể có ước nguyên tố chung.

=> ƯCLN(ab,a+b)=1

Vậy ƯCLN(ab,a+b)=1

Khách vãng lai đã xóa
Lê Minh Vũ
24 tháng 9 2021 lúc 9:24

Giả sử \(d\) là ước nguyên tố của \(ab\)\(a+b\).

\(\Rightarrow\) \(ab⋮d\)\(a+b⋮d\)

\(ab⋮d\) \(\Rightarrow\) \(a⋮d;b⋮d\) (Vì \(d\) là số nguyên tố)

Do vai trò của \(a\)\(b\) bình đẳng nên:

Giả sử: \(a⋮d\) \(\Rightarrow\) \(b⋮d\) (Vì \(a+b⋮d\))

\(\Rightarrow\) \(d\inƯC\left(a;b\right)\). Mà \(ƯCLN\left(a,b\right)=1\)

\(\Rightarrow\) \(d=1\)(trái với \(d\) là số nguyên tố)

Do đó \(ab\)\(a+b\) không thể có ước nguyên tố chung.

\(\Rightarrow\) \(ƯCLN\left(ab,a+b\right)=1\)

Vậy \(ƯCLN\left(ab,a+b\right)=1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Nguyễn Bảo Trân
Xem chi tiết
T gaming Meowpeo
Xem chi tiết
Long Vũ Duy
Xem chi tiết
Phạm Thế Hanh
Xem chi tiết
Nguyễn Hữu Toàn
Xem chi tiết
Hồ Nguyên Vũ
Xem chi tiết
Ngô Văn Nam
Xem chi tiết
Ngô Văn Nam
Xem chi tiết
Ngô Văn Nam
Xem chi tiết