Ta có BĐT \(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)
Từ BĐT vừa chứng minh trên ta suy ra
\(a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le\dfrac{a+b}{2}\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\)
\(\Rightarrow ab\le\left(\dfrac{6}{2}\right)^2=3^2=9\left(a+b=6\right)\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a+b=2\sqrt{ab}\\a+b=6\end{matrix}\right.\)\(\Rightarrow a=b=3\)