Bạn xem lại đề, khi $a=4,b=1$ thì cả 2 phương trình đều có nghiệm.
Bạn xem lại đề, khi $a=4,b=1$ thì cả 2 phương trình đều có nghiệm.
Cho a,b là hai số thực bất kì, chứng minh rằng có ít nhất một trong hai phương trình ẩn x sau vô nghiệm
x2 +2ax+ 2a2 - b2 +1 =0 (1)
x2 +2bx+ 3b2 - ab =0
Cho b, c là các số thỏa mãn : \(\frac{1}{b}+\frac{1}{c}=2\).
Chứng minh rằng ít nhất một trong hai phương trình sau có nghiệm : \(x^2+2bx+c=0\) và \(x^2+2cx+b=0\)
a) cho phương trình x2+ax+b+1=0 có 2 nghiệm nguyên dương .CMR a2+b2 là một hợp số
b) cho 3 phương trình ax2+2bx+c=0(1);bx2+2cx+a=0(2);cx2+2ax+b=0(3) với a,b,c khác 0 .CMR ít nhất một trong 3 phương trình trên đây có nghiệm
chứng minh phương trình bậc hai một ẩn sau luôn có 2 nghiệm phân biệt vs mọi m
x2-(m+1)x+m=0
3,cho phương trình bậc hai x2-2(m-1)x+m-2=0 . chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt x1,x2 . tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m
Chứng minh rằng phương trình \(\left(ax^2+2bx+c\right)\left(bx^2+2cx+a\right)\left(cx^2+2ax+b\right)=0\) luôn có nghiệm với mọi số thực a,b,c
Cho phương trình: -(m+4)x + 3m +3=0 (x là ẩn số) a) Chứng minh phương trình đã cho luôn có nghiệm với mọi gia trị của m b) Tính tổng và tích hai nghiệm của phương trình c) Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn: - x1 = x2 - + 8
Cho 2 phương trình :x^2+ax+1=0 và x^2+bx+1=0.Chứng minh rằng :Nếu ab>=4 thì tồn tại ít nhất một trong 2 phương trình đã có nghiệm .
CMR nếu a, b, c là những số khác 0 thì trong 3 phương trình sau phải có ít nhất 1 phương trình có nghiệm:
\(ãx^2+2bx+c=0\left(1\right)\)
\(bx^2+2cx+a=0\left(2\right)\)
\(cx^2+2ax+b=0\left(3\right)\)