Bài tập cuối chương 4

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Cho hai hình bình hành \(ABCD\) và \(ABEF\) nằm trong hai mặt phẳng khác nhau. Lấy các điểm \(M,N\) lần lượt thuộc các đường chéo \(AC\) và \(BF\) sao cho \(MC = 2MA;NF = 2NB\). Qua \(M,N\) kẻ các đường thẳng song song với \(AB\), cắt các cạnh \(AD,AF\) lần lượt tại \({M_1},{N_1}\). Chứng minh rằng:

a) \(MN\parallel DE\);

b) \({M_1}{N_1}\parallel \left( {DEF} \right)\);

c) \(\left( {MN{N_1}{M_1}} \right)\parallel \left( {DEF} \right)\).

Quoc Tran Anh Le
22 tháng 9 2023 lúc 13:47

loading...

\(\begin{array}{l}\left. \begin{array}{l}N{N_1}\parallel AB \Rightarrow \frac{{A{N_1}}}{{AF}} = \frac{{BN}}{{BF}} = \frac{1}{3}\\M{M_1}\parallel AB \Rightarrow \frac{{A{M_1}}}{{A{\rm{D}}}} = \frac{{IM}}{{I{\rm{D}}}} = \frac{1}{3}\end{array} \right\} \Rightarrow \frac{{A{N_1}}}{{AF}} = \frac{{A{M_1}}}{{A{\rm{D}}}}\\\left. \begin{array}{l} \Rightarrow {M_1}{N_1}\parallel DF\\DF \subset \left( {DEF} \right)\end{array} \right\} \Rightarrow {M_1}{N_1}\parallel \left( {DEF} \right)\end{array}\)

c) Ta có:

\(\left. \begin{array}{l}\left. \begin{array}{l}N{N_1}\parallel AB\parallel EF\\EF \subset \left( {DEF} \right)\end{array} \right\} \Rightarrow N{N_1}\parallel \left( {DEF} \right)\\{M_1}{N_1}\parallel \left( {DEF} \right)\\{M_1}{N_1},N{N_1} \subset \left( {MN{N_1}{M_1}} \right)\end{array} \right\} \Rightarrow \left( {MN{N_1}{M_1}} \right)\parallel \left( {DEF} \right)\)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết