cho đường tròn tâm o bán kính R và dây AB khác đường kính, qua O kẻ đường thẳng vuông góc với Ab tại H và đường thẳng này cắt tiếp tuyến tại A của đường tròn tại M
a) C/M MB là tiếp tuyến củ đường tròn tâm O
b) biết R=15cm; Ab=24cm. tính Om
c) kẻ cát tuyến MCD ( C nằm giữa Mvaf D) . gọi I là giao điểm CD, tia OI cắt tiếp tuyến tại C của đường tòn tai điểm K. C/M OI.OK=OM.OM và ba điểm A,B,K thẳng hàng
Cho đường tròn (O;R) và điểm M ở ngoài (O). Vẽ cát tuyến MAB (A,B thuộc O)) và nằm giữa M VÀ B). Tiếp tuyến A và B cắt nhau tại C. vẽ CH vuông góc với OM tại H, CH cắt AB tại N
a) cm: 5 điểm B,O,H,A,C cùng thuộc 1 đg tròn
b) OC cắt AB tại T. cm: OH.OM=OT.OC
c)CH cắt (O) theo thứ tự tại E vs F. cm: ME, MF là tiếp tuyến của (O)
d)cm: MA.MB=MN.MT
e) đg thẳng vuông góc với O cắt tại S, tính diên tích tam giác MOS nếu biết OH=R/2
Cho (O;R).A nằm ngoài đường tròn sao cho OA=2R.Kẻ tiếp tuyến AB và AC với (O) (B,C là tiếp điểm) Đoạn thẳng OA cắt (O) tại I đường thẳng qua O và vuông góc với OB cắt AC tại K a) chứng minh tam giác OAK cân tại A b)CB vuông góc với OA c) Đường thẳng KI cắt AB tại M. Chứng minh KM là tiếp tuyến của (O)
Cho đường tròn (O),(O') cắt nhau tại A,B. Gội I là trung điểm OO', qua A vẽ đường thẳng vuông góc với AI cắt đường tròn (O) tại C, (O') tại D sao cho C và D khác A. CM: AC=AD
: Cho đường tròn (O; R) có đường kính AC và dây cung BC = R. a) Tính số đo của  và độ dài dây AB theo R. b) Đường thẳng qua O và vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) ở D. Chứng minh DB là tiếp tuyến của đường tròn (O). c) Vẽ dây BE ⊥ AC tại M . Chứng minh tứ giác OBCE là hình thoi và tính diện tích tứ giác OBCE theo R. d)Tiếp tuyến tại C của (O) cắt DB tại K . Chứng minh AK, CD, BE đồng quy. MK CHỈ CẦN CÂU C THÔI Ạ
Bài 14: Cho đường tròn (O;R) Lấy M cách O một khoảng cách = 2R. Từ M kẻ các tiếp tuyến MA và MB với đường tròn (A và B là các tiếp điểm). Đoạn thẳng OM cắt đường tròn (O) tại C. Đường Thẳng qua O và vuông góc với OB cắt OA tại D. Đường thẳng DC cắt MB tại điểm E.
a) Chứng minh Tam giác MAB là Tam giác đều
b) Chứng minh rằng Tam giác DMO cân tại D
c) Chứng minh rằng DE là tiếp tuyến của đường tròn (O)
cho tam giác đều ABC nội tiếp đường tròn (O;R) đường thẳng vuông góc với AC cắt (O) tại D cắt tiếp tuyến qua C của đường tròn O tại E. Gọi M là trung điểm của CE và F là giao điểm của AC và BD a) CM:AM là tiếp tuyến đường tròn(O) b) tứ giác AMCB là hình gì? Vì sao? c) CM: C,O,D thẳng hàng d) CM: BD//EF e) CM: B,D,C,F thuộc 1 đường tròn