AH // BK (cùng ⊥ b) và AB // HK ⇒ tứ giác ABKH là hình bình hành
⇒ AH = BK = h
AH // BK (cùng ⊥ b) và AB // HK ⇒ tứ giác ABKH là hình bình hành
⇒ AH = BK = h
Cho 2 điểm A, B nằm cùng phía đối với đường thẳng d. Gọi AH, BK là các đường vuông góc kẻ từ A, B đến d. Gọi C là điểm bất kì nằm giữa H và K.
a. Vẽ A' đối xứng với A qua d. CMR: góc ACH = góc A'CH.
b. Giả sử góc ACH = góc BKC. CMR: khi đó 3 điểm A', C, B thẳng hàng.
c. Nêu cách dựng điểm C nằm giữa H và K sao cho góc ACH = góc BCK.
. Cho tam giác ABC nhọn(AB < AC) các đường cao BE và CF cắt nhau tại H. a) Chứng minh AH vuông góc với BC b) Từ B kẻ đường thẳng song song với CF, từ C kẻ đường thẳng song song với BE hai đường thẳng này cắt nhau tại K. Gọi M là trung điểm của Bc. Chứng Minh H, M, K thẳng hàng c) Gọi O là trung điểm của AK. Chứng minh OM vuông góc với BC
Cho tam giác ABC vuông cân có góc A = 90 độ. Gọi M là trung điểm của AB. Từ M vẽ đường thẳng song song AC cắt BC tại H. Từ C vẽ đường thẳng song song AB cắt MH tại N
a) Chứng minh tứ giác AMNC là hình chữ nhật
b) Gọi D là giao điểm của hai đường thẳng AH và CN. Chứng minh tứ giác ABDC là hình vuông
Bài 6: Cho hình thang ABCD có hai đáy là AB và CD. Một đường thẳng song song với AB cắt các cạnh bên AD, BC theo thứ tự ở E và F.
a) Chứng minh ED/AD + BF/BC = 1
b) Các đường chéo của hình thang cắt nhau tại O. Chứng minh OA.OD = OB.OC.
Bài 7: Cho tam giác ABC nhọn, M là trung điểm của BC, E thuộc đoạn thẳng MC. Qua E kẻ đường thẳng song song với AC cắt AB ở D, cắt AM ở K. Qua E kẻ đường thẳng song song với AB cắt AC ở F.
a) Chứng minh CF = DK
b) Gọi H là trực tâm của tam giác ABC. Đường thẳng qua H vuông góc với MH cắt AB và AC theo thứ tự ở I và K’. Qua C kẻ đường thẳng song song với IK’, cắt AH và AB theo thứ tự ở N và P. Chứng minh NC = NP và HI = HK’.
Bài 8: Cho tam giác ABC, điểm M bất kì trên cạnh AB. Qua M kẻ đường thẳng song song với BC cắt AC ở N biết AM = 11 cm, MB = 8 cm, AC = 38 cm. Tính độ dài các đoạn thẳng AN, NC.
Bài 9: Cho góc xAy, trên tia Ax lấy hai điểm D và E, trên tia Ay lấy hai điểm F và G sao cho FD song song với EG. Đường thẳng qua G song song với FE cắt tia Ax tại H. Chứng minh AE 2 = AD.AH.
Bài 10: Cho hình bình hành ABCD. Gọi E là một điểm bất kì trên cạnh AB. Qua E kẻ đường thẳng song song với AC cắt BC ở F và kẻ đường thẳng song song với BD cắt AD ở H. Đường thẳng kẻ quá F song song với BD cắt CD ở G. Chứng minh AH.CD = AD.CG.
cho tam giác ABC nhọn (AB>AC) có góc B bằng 45 độvà vẽ đường cao AH. Gọi M là trung điểm AB. P là điểm dối xúng với H qua M. a, Chứng minh AHBP là hình vuông b, Vẽ đường cao BK của tam giác ABC. Chứng minh HP=2MK c, Gọi D là giao điểm của AH và BK. Qua D và C vẽ các đường thẳng song song với BC và AH sao cho chúng cắt nhau tại Q. Chứng minh P,K,Q tahwngr hàng
Câu 4 (3điểm): Cho hình chữ nhật ABCD (AB < BC). Gọi H là chân đường vuông góc kẻ từ A xuống BD. a) Chimg minh: AAHB A DAB. b) Biết AB = 12cm; BC = 16cm. Tính độ dài các đoạn thẳng BH, AH. c) Gọi M, N theo thứ tự thuộc các đoạn thẳng BH và CD sao cho BM = BH;CN = CD. 3 2h30 Chứng minh: tam giac AMB đồng dạng với tam giacs ANC và AMvuoong MN
Cho tam giác ABC nhọn ( AB > AC ) có góc B = 45 * và đường cao AH . M là trung điểm cạnh AB , P là đối xứng với H qua M
a) cm : AHBP là hình vuông
b) Vẽ đường cao BK của tam giác ABC . cm Hp = 2 MK
c) Gọi D là giao của AH và BK . Qua D và C vẽ cá đường thẳng lần lượt song song với BC và AH sao cho chúng cắt nhau tại Q. cm : P, K, Q thẳng hàng
d) cm các đường thẳng CD, AB, PQ đồng quy
Cho tam giác ABC vuông tại A (AB>AC) Trên cạnh AB lấy điểm H bất kì (H khác A và B) Gọi I là đường chiếu của H lên CB. Đường thẳng HI cắt CA tại D
a) CMR ΔABC đồng dạng Δ IBH
b)Cho AC=3cm, BC= 5cm, AH= 1cm. Gọi M là trung điểm của HB. Tính độ dài các đoạn thẳng AB, IB và IM
c) Gọi K là giao điểm của CH và BD. CMR: BH.BA+CH.CK Không đổi khi H di chuyển trên cạnh AB.
d)CMR: =1
cho đường thằng a và điểm A nằm ngoài đường thẳng a. gọi H là hình chiếu của điểm A xuống đường thẳng a. trên đường thẳng a lấy hai điểm B và C. tính độ dài các đường xiên AB; AC biết AH= 6cm; HB= 8cm; HC= 10cm