a) Xét \(\Delta OAD\) và \(\Delta OCB\) có:
OA = OC (gt)
\(\widehat{O}\) (chung)
OB = OD(gt)
Do đó: \(\Delta OAD=\Delta OCB\left(c-g-c\right)\)
=> AD = BC (hai cạnh tương ứng)
b) Vì \(\Delta OAD=\Delta OCB\left(cmt\right)\)
=> \(\widehat{OAD}=\widehat{OCB}\) (hai góc tương ứng)
mà :
\(\widehat{OAD}+\widehat{BAD}=180^0\) (kề bù)
\(\widehat{OCB}+\widehat{BCD}=180^0\) (kề bù)
=> \(\widehat{BAD}=\widehat{BCD}\) (đpcm)