Ta phải giả thiết x,y,z khác không.
gt: (yc-bz)/x=(za-xc)/y =>
(c/z-b/y)/zx^2=(a/x-c/z)/zy^2 hay:
(c/z-b/y)/x^2=(a/x-c/z)/y^2 (*)
mặt khác từ gt:
(yc-bz)/x=(xb-ya)/z =>
(z/c-b/y)/yx^2=(b/y-a/x)/yz^2 hay:
(z/c-b/y)/x^2=(b/y-a/x)/z^2 (**)
*nếu: z/c-b/y>0
<=>z/c>b/y
Theo (*) ta có:
a/x-z/c>0
<=>a/x>z/c
=>a/x>z/c>b/y
=>b/y-a/x<0 vô lí vì từ (**) :
b/y-a/x>0
*nếu: z/c-b/y<0
<=>z/c<b/y
Theo (*) ta có:
a/x-z/c<0
=>a/x<z/c
=>a/x<z/c<b/y.
=>b/y-a/x>0. vô lí vì theo (**) :
b/y-a/x<0
Vậy ta phải có:
z/c-b/y=0
Thay vào (*) ta có:
a/x=b/y=z/c.