Đặt \(\frac{x}{8}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=8k\\y=3k\\z=5k\end{matrix}\right.\)
Ta có: \(A=\frac{x+y-3z}{x+y+3z}\)
\(=\frac{8k+3k-3\cdot5k}{8k+3k+3\cdot5k}=\frac{11k-15k}{11k+15k}=\frac{-4k}{16k}=\frac{-1}{4}\)
Vậy: \(A=-\frac{1}{4}\)