\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow ad-bd=bc-bd\)
\(\Rightarrow d\left(a-b\right)=b\left(c-d\right)\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right)\)
Có \(\frac{a}{b}=\frac{c}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{b}{d}=\frac{a-b}{c-d}\)
=> \(\frac{a-b}{b}=\frac{c-d}{d}\)(Đpcm)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{c-d}{d}=\frac{a-b}{b}\)
Ta có:
\(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-c}{b-d}\)( tính chất dãy tỉ số = nhau )
\(\Rightarrow\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)
=> ĐPCM
Vì \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}-1=\frac{c}{d}-1=\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}=\frac{a-b}{b}=\frac{c-d}{d}\)
Vậy \(\frac{a-b}{b}=\frac{c-d}{d}\)