\(Bài 4: Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B,C là các tiếp điểm). Gọi H là giao điểm của AO và BC, K là trung điểm của HB. Đường thẳng AK cắt đường tròn tại M và N( M nằm giữa A và N). Kẻ OI vuông góc với MN (I thuộc MN). Chứng minh a. Tứ giác OHKI nội tiếp b. AB² = AM. AN. Từ đó suy ra AB² + IM² =AI² c. CI = 3BI Read more: https://dethihocki.com/de-ki-2-lop-9-mon-toan-phong-gd-quang-ngai-2019-a14680.html#ixzz6FDyVDHYX\)
từ điểm a nằm ngoài đường tròn (o,r) vẽ các tiếp tuyến ab,ac(b,c là tiếp điểm) cát tuyến amn của (o,r) chứng minh
a,tứ giác aboc nội tiếp xác định tâm o' và bán kính của đường tròn đi qua 4 điểm a,b,o,c
b,ab^2=am.an
c,gọi i là trung điểm của mn chứng minh ia là phân giác góc bic
Cho đường tròn (O;R) và một điểm S nằm bên ngoài đường tròn .Kẻ các tiếp tuyến SA,SB với đường tròn (A,B là các tiếp điểm).Một đường thẳng đi qua S(không đi qua tâm 0)cắt đường tròn (O;R) tại hai điểm M và N nằm giữa S và N.Gọi H là giao điểm của SO và AB;I là trung điểm MN.Hai đường thẳng OI và AB cắt nhau E
a) Chứng minh IHSE là tứ giác nội tiếp đường tròn
b) Chứng minh : OI.OE=R\(^2\)
c) Cho SO=2R và MN=R\(\sqrt{3}\) .Tính diện tích tam giác ESM theo R
AI GIÚP VVS HELP ME T_T
Cho đường tròn (O;R) và dây BC cố định không đi qua tâm. Trên tia đối của tia BC lấy điểm A (A khác B). Từ A kẻ hai tiếp tuyến AM và AN với đường tròn (O) (M và N là các tiếp điểm). Gọi I là trung điểm của BC.1) Chứng minh A; O; M; N; I cùng thuộc một đường tròn và IA là tia phân giác của góc MIN.2) Gọi K là giao điểm của MN và BC. Chứng minh
\(\dfrac{2}{AK}=\dfrac{1}{AB}+\dfrac{1}{AC}\)
3) Đường thẳng qua M và vuông góc với đường thẳng ON cắt (O) tại điểm thứ hai là P. Xác định vị trí của điểm A trên tia đối của tia BC để AMPN là hình bình hành.
Mình cần câu c thôi
Cho tam giác AB cân tại A nội tiếp đường tròn tâm O. Gọi M;N là hai điểm lần lượt thuộc các đường thẳng AB và AC sao cho MN=AB=AC. Gọi P là giao điểm của MN và (O), Q là 1 điểm thuộc AP sao cho QM+QN=AP. Chứng minh rằng 4 điểm A;M;Q;N cùng thuộc một đường tròn.
Từ điểm A nằm ngoài đường tròn tâm O kẻ hai tiếp tuyến AB và AC( B và C là tiếp điểm). Đường thằng đi qua A cắt (O) tại D và E ( D nằm giữa A và E), kẻ dây cung EN song song với BC, DN cắt BC tại I. Chứng minh rằng BI= CI
Qua điểm A nằm ngoài đường tròn (O) Kẻ tiếp tuyến AM,AN với M,N là tiếp điểm. a) CMR: bốn điểm A,M,O,N cùng thuộc 1 đường tròn. b) Vẽ cát tuyến ABC tới (O) sao cho tia AO nằm giữa tia AM và tia AC.Chứng minh rằng: AM2 = = AB.AC c) Gọi H là giao điểm của AO và MN.CMR: 4 điểm B,H,O,C cùng thuộc một đường tròn. d) CMR: HN là tia phân giác của góc BHC.
Cho (O;R) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB tiếp xúc với đường tròn (O) tại B. Vẽ một đường thẳng qua A cắt đường tròn tại hai điểm M và N ( M nằm giữa A và N). Qua M kẻ đường thẳng song song với AB cắt BN tại E. Gọi I là trung điểm của ME. Vẽ dây BQ của đường tròn (O) sao cho BQ đi qua điểm I
a) Chứng minh hai tam giác BMI và tam giác BQM đồng dạng
b)Chứng minh tứ giác QIEN nội tiếp
c) Chứng minh BM.QN=BN.MQ
cho đường tròn tâm o có đường kính ab=2r. lấy điểm e nằm trên tiếp tuyến tại a của đường tròn . gọi m là giao điểm của eb với đường tròn:
a ) chứng minh AM là đường cao của tam giác EAB và 1/ EA bình + 1 / 4R bình =1/AM bình
b) qua b vẽ đường thẳng song song với eo và cắt đường tròn ở i chứng minh EI là tiếp tuyến