Cho đường tròn (O) và một dây AB. Vẽ đường kính CD vuông góc với AB (D thuộc cung nhỏ AB). Trên cung nhỏ BC lấy một điểm N. Các đường thẳng CN và DN lần lượt cắt đường thẳng AB tại E và F. Tiếp tuyến của đường tròn (O) tại N cắt đường thẳng AB tại I. CMR: a) Các tam giác INE và INF là tam giác cân b) AI = AE+AF/2 Mong mọi người giúp đỡ em/mình!
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F . Chứng minh: bốn điểm B E F I thuộc một đường tròn.
Cho đường tròn tâm O đường kính AB. Trên bán kính OA, lấy điểm C tùy ý (C khác O và A). Vẽ đường tròn tâm J đường kính AC. Gọi I là trung điểm BC. Qua I vẽ dây cung MN vuông góc BC; AM cắt đường tròn tâm J tại E.
a/ CM CIME nội tiếp.
b/ CM BMCN là hình thoi. Từ đó suy ra ba điểm E, C, N cùng thuộc một đường thẳng.
c/ CM IE là tiếp tuyến của đường tròn tâm J.
d/ Đường tròn tâm M bán kính MI cắt đường tròn tâm O tại P và Q, Gọi H là giao điểm của PQ và MN. Tính tỉ số HM/HN
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I ( I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F . Chứng minh: bốn điểm B E F I thuộc một đường tròn.
Cho đường tròn (O;R) và dây cung AB, vẽ đường kính CD vuông góc với AB tại K( D thuộc cung nhỏ AB). Lấy điểm M thuộc cung nhỏ BC, DM cắt AB tại F, CM cắt AB tại E
a) Chứng minh tứ giác CKFM nội tiếp
b) DF.DM=DA2
c) FBEB=FKAK
D, CM cắt AB tại E . tiếp tuyến tại M của (0) cắt AE tại I. CM: IE=IF
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC( E khác B và C), AE cắt CD tại F. Chứng minh
a) Bốn điểm B, E, F,I cùng thuộc một đường tròn.
b)AE.AF=AC2
c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp tam giác CÈ luôn thuộc một đường thẳng cố định
Cho đương tròn (O) dây cung AB không đi qua tâm và I là trung điểm của dây AB. Trên tia đía của dây AB lấy điểm M khác A, vẽ 2 tiếp tuyến MC và MD đến (O) (tiếp điểm C thuộc cung nhỏ AB, tiếp điểm D thuộc cung lớn AB)
a) CM: OIMD nôi tiếp đường tròn
b) \(MD^2=MA.MD\)
c) Đường thẳng OI cắt cung nhỏ AB tại N, giao điểm của 2 đường thẳng DN và MB là E. CM: tam giác MCA cân tại M
d) đường thẳng ON cắt CD tại F. CM: \(\frac{1}{OI.OF}+\frac{1}{ME^2}=\frac{4}{CD^2}\)
Bài 4: Cho đường tròn tâm O đường kính AC. Trên đoạn thẳng OC lấy điểm B và vẽ đường tròn O’ có đường kính BC. Gọi M là trung điểm của AB, qua M kẻ dây cung vuông góc với AB cắt đường tròn O tại D và E. Nối CD cắt đường tròn O’ tại I
a/ Chứng minh DAEB là hình gì?
b/ Chứng minh MI = MD và MI là tiếp tuyến của đường tròn O’
c/ Gọi H là hình chiếu của I trên BC. Chứng minh CH.MB= BH.MC
Mn giúp em với ạ, cảm ơn mn nhìu :>
Cho đường tròn tâm O đường kính AB. Dây CD vuông góc với AB tại E (E nằm giữa A và O; E không trùng A, không trùng O). Lấy điểm M thuộc cung nhỏ BC sao cho cung MB nhỏ hơn cung MC. Dây AM cắt CD tại F. Tia BM cắt đường thẳng CD tại K. 1.Chứng minh tứ giác BMFE nội tiếp. 2.Chứng minh BF vuông góc với AK và EK.EF = EA.EB 3.Tiếp tuyến của (O) tại M cắt tia KD tại I. Chứng minh IK = IF.