cho tam giác ABC nhọn có AB<AC nội tiếp đường tròn tâm O , bán kính R . gọi H là giao điểm của 3 đường cao AD,BE,CF của tam giác ABC . kẻ đường kính AK của đường tròn (O) , AD cắt (O) tại điểm N
1. chứng minh AEDB , AEHF là tứ giác nội tiếp và AB.AC=2R.AD
2. chứng minh HK đi qua tring điểm M của BC
3. gọi bán kính đường tròn ngoại tiếp tứ giác AEHF là r . chứng minh OM^2=R^2-r^2
4. chứng minh OC vuông góc với DE và N đối xứng với H qua đường thẳng BC
cho đường tròn tâm (O;R) đường kính AB và điểm M trên đường tròn O sao cho góc MAB= 60 độ. Kẻ dây MN vuông góc với AB tại H:
1. Chứng minh AM và AN là các tiếp tuyến của đường tròn (B;BM)2. Chứng minh MN2= 4AH.HB3. Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó4. Tia MO cắt đường tròn (o) tại E, tia MB cắt (B) tại F. Chứng minh 3 điểm: N,E,F thẳng hàng.Cho đường tròn tâm O, điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Gọi I là giao điểm của OA và BC.
a) Chứng minh tam giác ABC cân.
b) Chứng minh OA vuông góc với BC.
c) Tính độ dài BI, biết OB = 6 cm; OA = 8 cm. d) Chứng minh rằng : AB 2 – OC 2 = AI 2 – IO2
cho tam giác ABC nhọn ABC nội tiếp đường tròn (O).E là điểm chính giữa cung nhỏ BC. Gọi M là điểm trên cạnh AC sao cho EM=MC( M khác C) N là giao điểm BM với đường tròn tâm O ( N khác B). Gọi I là giao điểm của BM và AE, K là giao điểm của AC với EN. c/m tứ giác EKMI nội tiếp
Từ điểm A nằm ngoài đường tròn (O; R) thỏa mãn OA = 3R, kẻ hai tiếp tuyến AM, AN với đường tròn, M và N là hai tiếp điểm. Qua E thuộc cung nhỏ MN, kẻ tiếp tuyến thứ ba với đường tròn (O) cắt AM, AN lần lượt tại H và K. Tính chu vi tam giác AHK theo R. (gợi ý: Tính độ dài AM, AN theo R)
CHo tam giác ABC có 3 góc nhọn nội tiếp đường tròn (O; R) và H là trực tâm của tam giác ABC. Đường cao AD cắt đường tròn tại điểm M khác A. Vẽ đường kính AN. a) CM: BH // CN
b) CM: DH = DM
c) Biết AH = R. Tính góc BAC
(Giải câu c thôi)
cho tam giác ABC nhọn nội đường tròn tâm O phân giác A cắt (O) tại M phân giác ngoài A cắt (O) tại N AH vuông với BC kẻ đg kính ok , AH giao với (O) tại I
b,góc BMC = Góc ABC + ACB
c, M, O, N thẳng hàng
d, AM là phân giác của góc HOA
e,cung BI = cung CK
f, DB.DC=DM.DA
g,MC^2=MD.MA
Cho tam giác ABC nội tiếp (O) đường kính BC có AB > AC , hai tiếp tuyến tại A và B cắt nhau tại M .
1) Chứng minh: Tứ giác MAOB nội tiếp đường tròn và xác định tâm I của đường tròn này.
2) Chứng minh : .
3) Đường cao AH của tam giác ABC cắt CM tại N. Chứng minh: N là trung điểm của AH.
Cho tam giác ABC nội tiếp đường tròn tâm O, gọi E,D lần lượt là giao điểm của các tia phân giác trong và ngoài của 2 góc B và C. Đường thẳng ED cắt BC tại I, cắt cung nhỏ BC ở M chứng minh
a) ba điểm AED thẳng hàng
b) chứng minh tứ giác BECD nội tiếp
c) Tìm 2 cặp tam giác đồng dạng
Help!! mời các cao nhân vào giúp