Cho đường tròn tâm ( O ) đường kính AB. Kẻ tiếp tuyến của nửa đường tròn. Qua điểm M bất kì thuộc đường tròn ( M khác A và B ) kẻ tiếp tuyến với nửa đường tròn cắt Ax, By thứ tự tại C, D. Chứng minh rằng:
a) ∠COD = 90 độ
b) CD = AC + BD
c) Tích AC.BD không đổi khi M di chuyển trên nửa đường tròn
Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn nó cắt Ax và By theo thứ tự ở C và D. Chứng minh rằng:
a) ∠COD = 90o
b) CD = AC + BD
c) Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn.
Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn nó cắt Ax và By theo thứ tự ở C và D, MA cắt OC tại E, MB cắt OD tại F Chứng minh rằng:
a) ∠COD = 90o
b) CD = AC + BD
c) Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn.
d) EMFO là hình gì
e) Cm OE*OC=OF*OD
f) Chứng minh AB là tiếp tuyến của đường tròn
Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn nó cắt Ax và By theo thứ tự ở C và D. Chứng minh rằng:
Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn.
Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành 2 nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax và By theo thứ tự ở C và D. Chứng minh rằng :
a)ˆCOD=900COD^=900
b) CD = AC +BD
c) Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn
Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn , nó cắt Ax và By theo thứ tự ở C và D. Chứng minh rằng:
a) CÔD = 90*
b) CD = AC + BD
c) Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn.
(ko cần vẽ hình)
Cho nửa đường tròn (O) đường kính AB. Kẻ các tiếp tuyến Ax, By của nửa đường tròn. Qua điểm M bất kỳ thuộc nửa đường tròn (M khác A và B) kẻ tiếp tuyến với nửa đường tròn cắt Ax, By thứ tự tại C và D. Chứng minh rằng:
1) góc COD = \(90^o\)
2) CD = AC + BD
3) Tích AC.BD không đổi khi M di chuyến trên nửa đường tròn
cho nửa đường tròn (O) đường kính AB. Gọi Ax,By là các tia vuông góc với AB (Ax,By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB ). Qua điểm M thuộc nửa đường tròn ( M khác A và B ), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax tại C và cắt By tại D
a) CM: CD=AC+BD VÀ COD 90 độ
b) AD cắt BC tại N . CM: MN // BD
c) tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn
d) gọi H là trung điểm của AM. Chứng minh 3 điểm O,H,C thẳng hàng
Cho nửa đường tròn (O) đường kính AB.Gọi Ax,By là các tia vuông góc với AB (Ax,By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB).Qua điểm M thuộc nửa đường tròn (M khác A và B),kẻ tiếp tuyến với nửa đường tròn,nó cắt Ax tại C và cắt By tại D.
a) C/m:CD=AC+BD và \(\widehat{COD}=90^o\)
b) AD cắt BC tại N. Chứng minh: MN // BD
c) C/m: AC.BD không đổi khi M di chuyển trên nửa đường tròn
d) Gọi H là trung điểm của AM. Chứng minh: ba điểm O,H,C thẳng hàng