Xét ΔOAB có \(cosAOB=\frac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}\)
\(=\frac{R^2+R^2-\left(R\sqrt3\right)^2}{2\cdot R\cdot R}=\frac{2R^2-3R^2}{2R^2}=-\frac12\)
=>\(\hat{AOB}=120^0\)
Diện tích tam giác AOB là:
\(S_{AOB}=\frac12\cdot OA\cdot OB\cdot\sin AOB\)
\(=\frac12\cdot R\cdot R\cdot\sin120=\frac12R^2\cdot\frac{\sqrt3}{2}=\frac{R^2\sqrt3}{4}\)