Từ điểm A ở ngoài đường tròn (O) vẽ 2 tiếp tuyến AB, AC và cát tuyến AMN của đường tròn đó. Gọi I là trung điểm của dây MN.
a) Chứng minh: Năm điểm A, B, I, O, C cùng nằm trên một đường tròn, xác định tâm và bán kính của đường tròn này.
b) Vẽ đường kính BD. Chứng minh CD song song với OA.
Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Kẻ tiếp tuyến chung CD (CD gần B hơn A) của hai đường tròn. C thuộc (O) và D thuộc (O’). Gọi I là giao điểm của AB và CD, E là điểm đối xứng với B qua I. Chứng minh rằng: B, C, E, D là 4 đỉnh của một hình bình hành.
Từ một điểm M ở ngoài đường tròn (O), vẽ hai tiếp tuyến MA,MB đến đường tròn ( A,B là hai tiếp điểm). Qua À vẽ đường thẳng song song với MV, cắt đường tròn tại E, đoạn thẳng ME cắt đường tròn tại F. Hai đường thẳng AF và MB cắt nhau tại I. CHỨNG MINH : 1) Tứ giác MAOB nội tiếp đường tròn 2) IB mủ 2 = IF.IA
Cho 2 đường tròn ( O) và( O’) cắt nhau tại A và B. Vẽ tiếp tuyến chung ngoài CD
của hai đường tròn (C thuộc (O), D thuộc (O’)) sao cho AB cắt CD tại điểm I thỏa mãn A
nằm giữa B và I .
a. Chứng minh IC 2 = IA.IB.
b. Qua A vẽ đường thẳng song song với CD cắt BC, BD lần lượt tại E và F . Chứng minh
A là trung điểm của EF
Cho đường tròn tâm (O) điểm A nằm ngoài đường tròn vẽ tiếp tuyến AB và cát tuyến ACD Chứng minh AB^2=AC.AD
4.Cho đường tròn (O) đường kính BC. Lấy điểm A bất kì nằm trên đường tròn
( AB> AC ) . Gọi M là giao điểm của tiếp tuyến tại A với đường thẳng BC. Chứng
minh rằng: gócBAO = góc CAM
5. Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Tiếp tuyến kẻ từ A của ( O')
cắt (O) tại C và tiếp tuyến tại A của (O) cắt (O') tại D. Chứng minh rằng:
góc CBA = góc DBA
cho đường tròn tâm o đường kính ab dây cd//ab. cd cùng chiều tia ab. chứng minh: a) góc adc = góc bcd b) góc acd = góc adc =90cho đường tròn tâm o đường kính ab dây cd//ab. cd cùng chiều tia ab. chứng minh: a) góc adc = góc bcd b) góc acd = góc adc =90
cho đường tròn tâm (O) và (O') cắt tại A,B.một tiếp tuyến chung của 2 đường tròn tại C,D, (C∈(O), D∈(O')). AB cắt CD tại I.
C/m :I là trung điểm CD.