cho đường tròn tâm O đường kính AB=2R. gọi I là trung điểm của oa, qua i kẻ dây MN vuông góc với OA. điểm C thuộc cung nhỏ BM (C ≠ B, C ≠ M); AC cắt MN tại D.
a) Chứng minh BICD nội tiep đường tròn
b) Chứng minh AD.AC = R2
huhu giúp mih vứi mih sắp thi ùi
ii. IO vuông góc với AC và BD
d) Chứng minh rằng: IA = IC; IB = ID; BC = AD. Tính T = \(IA^2+IB^2+IC^2+ID^2\)
Cho đường tròn (O;R) đường kính AB. Gọi I là dây cung của OA. Vẽ dây CD vuông góc với OA tại I. Lấy điểm E tùy ý trên cung nhỏ BC (E khác B và C). Gọi K là giao điểm của AE và BC. Kẻ KH vuông góc AB (H thuộc AB)
1) Chứng minh rằng BEHK là tứ giác nội tiếp.
2) Chứng minh rằng HK là tia phân giác của EHC và ba điểm E, H, D thẳng hàng.
3) Tìm vị trí của điểm E trên cung nhỏ BC sao cho chu vi ACEB lớn nhất.
Cho đường tròn (O) và dây cung BC cố định không qua tâm. Trên cung
lớn BC lấy điểm A sao cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt
nhau tại H và cắt đường tròn (O) lần lượt tại M, N , P.
a) Chứng minh rằng: Tứ giác AFHE nội tiếp.
b) Chứng minh rằng: AO vuông góc với NP.
Cho đường tròn (O;5cm) có đường kính AB, E thuộc đoạn thẳng AO (E khác A và O). Gọi H là trung điểm của AE, kẻ dây CD vuông góc với AE tại H.
a) Tính OH, CD biết AH=1cm
b) Chứng minh tứ giác ACED là hình thoi.
c) DE và BC cắt nhau tại I. Chứng minh HI là tiếp tuyến của đường tròn đường kính EB
Cho đường tròn bán kính (O; R). Từ một điểm A nằm ngoài đường tròn vẽ hai tiếp tuyến AB, AC. Vẽ cát tuyến AMN không qua O ( M nằm giữa A và N) Gọi I là trung điểm của MN. a. Chứng minh O, I,A,C cùng đường tròn. b. Hai đường thẳng BC và OI cắt nhau tại D chứng minh OI*OD=R^2
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn. Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt đường tròn (O; R) tại hai điểm C và D (C năm giữa M và D). Gọi I là trung điểm của dây CD, kẻ AH vuông góc với MO tại H.
a/ Tính OH. OM theo R.
b/ Chứng minh: Bốn điểm M, A, I, O cùng thuộc một đường tròn.
c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O)
Bài 12. Cho nửa đường tròn (O) đường kính AB = 2R và dây cung AC = R. Gọi K là trung điểm của dây cung CB, qua B dựng tiếp tuyến Bx với (O) cắt tia OK tại D.
a) Chứng minh rằng : \(\Delta\)ABC vuông.
b) Chứng minh rằng : DC là tiếp tuyến của đường tròn (O).
c) Tia OD cắt (O) tại M. Chứng minh rằng : Tứ giác OBMC là hình thoi .
d) Vẽ CH vuông góc với AB tại H và gọi I là trung điểm của cạnh CH. Tiếp tuyến tại A của đường tròn (O) cắt tia BI tại E. Chứng minh rằng ba điểm E, C, D thẳng hàng.