Cho đường tròn (O;R), đường kính AB vuông góc với dây cung MN tại H (H nằm giữa O và B). Trên tia đối NM lấy điểm C nằm ngoài đường tròn (O;R) sao cho đoạn thẳng AC cắt đương tròn tại k khác A. Hai day MN và BK cắt nhau ở E. Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F.
a) Chứng minh tứ giác AHEK nội tiếp.
b) Chứng minh tam giác NFK cân và EM. NC = EN. CM.
c) giả sử KE = KC. Chứng minh OK// MN và KM2 + KN2 = 4R2
Cho đường tròn (O;R) có đường kính AB. Từ điểm C nằm ngoài (O) kẻ cát tuyến CNM vuông góc với AB tại H (H nằm giữa O và B); AC cắt đường tròn (O;R) tại điểm K khác A, hai dây MN và BK cắt nhau ở E
a) CM: tứ giác AHEK nội tiếp đường tròn
b) Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. Chứng minh: tam giác NKF cân
1. cho đường tròn (O) đường kính AB và dây CD vuông góc với AB tại F. trên cung BC lấy điểm M. nối A với M cắt CD tại E
a. chứng minh AM là phân gics của góc CMD
b. chứng minh tứ giác EFBM nội tiếp
c. chứng minh AC^2=AE.AM
2. cho đường tròn (O), dây MN và một điểm C ở ngoài đường tròn và nằm trên tia NM. từ một điểm chính giữa P của cung lớn MN kẻ đường kính PQ của đường tròn cắt dây MN tại D. tia CP cắt đường tròn (O) tại điểm thứ hai I. các dây MN và QI cắt nhau tại K
a. chứng minh rằng tứ giác PDKI nội tiếp
b. chứng minh CI.CP=CK.CD
có thể giúp tôi được không ạ?^^
Cho đường tròn O;R đường kính AB vuông góc với dây cung mn tại điểm h(H nằm giữa O và B )trên tia đối NM lấy C sao cho AC cắt (O) tại K khác A MN BK cắt nhau tại E
a Cm AHEK nội tiếp
b Qua N kẻ đường thẳng vuông góc với AC cắt MK tại F Cm tam giác NFK cân và EM.NC=EN.CM
Cho đường tròn tâm O đường kính AB. Dây cung MN vuông góc với AB tại I( I nằm giữa A và O). Trên tia NM lấy điểm K nằm ngoài đường tròn ( M nằm giữa N và K), AK cắt đường tròn tại C, CB cắt MN tại D. Chứng minh rằng:
a/ Tứ giác ACDI nội tiếp đường tròn. Xác định đường kính và tâm của đường tròn đó.
b/ AB.DI = AC.BD
c/ AD cắt đường tròn tại E. Từ điểm C kẻ đường thẳng vuông góc với AE cắt EI tại F. Chứng minh ECF tam giác cân.
Cho đường tròn (O;R) và dây MN cố định (MN < 2R ). Kẻ đường kính AB vuông góc với dây MN tại E. Lấy điểm C thuộc dây MN (C khác M, N, E). Đường thẳng BC cắt (O;R) tại điểm K (K khác B).
1. Chứng minh AKCE là tứ giác nội tiếp.
2. Chứng minh BM2=BK BC.
3. Gọi I là giao điểm của hai đường thẳng AK và MN; D là giao điểm của hai đường thẳng AC và BI . Chứng minh điểm C cách đều ba cạnh của ADEK.
Cho đường tròn (O;R),từ điểm P nằm bên ngoài đường tròn kẻ cát tuyến PMN (M;N thuộc O ). Từ điểm chính giữa E của cung lớn MN kẻ đường kính EF của đường tròn cắt dây MN tại H .Tia PE cắt đường tròn tại K .Các dây MN và EK cắt nhau tại S.
a) Chứng minh tứ giác EKSH nội tiếp
b) Chứng minh KF là tia phân giác của góc MKN
c) Cho R=4cm,góc MOF=40 độ .tính độ dài cung MFN và diện tích hình quạt tròn OMFN.
Cho đường tròn (O;R),từ điểm P nằm bên ngoài đường tròn kẻ cát tuyến PMN (M;N thuộc O ). Từ điểm chính giữa E của cung lớn MN kẻ đường kính EF của đường tròn cắt dây MN tại H .Tia PE cắt đường tròn tại K .Các dây MN và FK cắt nhau tại S.
a) Chứng minh tứ giác EKSH nội tiếp
b) Chứng minh KF là tia phân giác của góc MKN
c) Cho R=4cm,góc MOF=40 độ .tính độ dài cung MFN và diện tích hình quạt tròn OMFN.
Cho đường tròn (O;R) và dây MN cố định. Gọi A là điểm chính giữa của cung lớn MN, đường kính AB cắt MN tại E. Lấy điểm C thuộc MN sao cho C khác M, N, E và BC cắt đường tròn (O;R) ở K. Chứng minh rằng:
a) Tứ giác KAEC nội tiếp
b) \(BM^2\) = BC.BK