Độ dài đường kính của (O) là:
\(\sqrt{\left(a\sqrt{2}\right)^2+\left(a\sqrt{2}\right)^2}=2a\)
=>Độ dài bán kính của (O) là R=a
\(S=R^2\cdot\Omega=a^2\Omega\)
Độ dài đường kính của (O) là:
\(\sqrt{\left(a\sqrt{2}\right)^2+\left(a\sqrt{2}\right)^2}=2a\)
=>Độ dài bán kính của (O) là R=a
\(S=R^2\cdot\Omega=a^2\Omega\)
Câu 1: Một hình vuông và 1 tam giác đều cùng nội tiếp trong một đường tròn (O;1) sao cho một cạnh của tam giác song song với một cạnh của hình vuông. tính diện tích phần chung của tam giác và hình vuông.
Câu 2: Cho tứ giác ABCD nội tiếp dường tròn tâm O. Cho biết phân giác của các góc BAD và ABC cắt nhau tại một điểm E trên CD.
a> Cm: AD+BC=CD
B> Cho biết CD/CB=k>1 tính S ADE/ S BCE
Cho tam giác ABC vuông tại A, có AB = 14, BC=50. Đường phân giác của góc ABC và đường trung trực của cạnh AC cắt nhau tại E
a. Cm tứ giác ABCE nội tiếp được trong một đường tròn. Xác định tâm O của đường tròn này.
b. Tính BE.
c. Vẽ đường kính EF của đường tròn (O). Tính diện tích phần hình tròn tâm (O) nằm ngoài đa giác ABFCE
Cho nửa đường tròn tâm O đường kính AB = 2a. Trên nửa đường tròn (O) xác định các điểm M và K sao cho K nằm trên cung AM và góc KOM = 90o. Gọi Q là giao điểm của BK với AM và P là giao điểm của AK với BM.
a. CMR MQKP là tứ giác nội tiếp
b. CMR tam giác AMP là tam giác vuông cân
c. Tính diện tích hình quạt tròn KOM ứng với cung nhỏ KM theo a.
d. Quay tam giác KOM một vòng quanh cạnh OK. Tính diện tích xung quanh và thể tích của hình tạo thành khi a = \(3\sqrt{2}\)cm
Cho tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên nội tiếp đường tròn tâm O bán kính r .Tiếp tuyến tại B và C của đường tròn tâm O bán kính r cắt nhau tại D.
a) Chứng minh tứ giác ABC nội tiếp được đường tròn
b) Đường thẳng BD và AC cắt nhau tại E Chứng minh EB²= EC×EA
c) Từ m trên cung nhỏ BC vẽ MI vuông góc với BC MH vuông góc với AB MF vuông góc với AC Chứng minh E,H,F thẳng hàng
d) cho góc BAC bằng 30 độ Tính theo r diện tích của tứ giác ABCD
Cho đường tròn (O; 4cm) có đường kính BC. Gọi A là điểm nằm trên đường tròn sao cho góc vuông ABC=30°. Trên tia AC lấy điểm P sao cho AP=AB. Đường thẳng vuông góc hạ từ P xuống BC cắt BC ở H và cắt BA ở D. Kẻ PB cắt đường tròn (O) tại I.
a)Tính độ dài đường tròn và diện tích hình tròn.
b)Chứng minh tứ giác ACHD nội tiếp.
c)Tam giác ABP là tam giác gì? Tính góc vuông APB, sđ cung ACI.
d)Tính độ dài cung tròn cung ACI và diện diện của hình quạt OAI.
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O,R), (AB<AC). Ba đường cao AE,BF,CK của tam giác ABC cắt nhau tại H. Vẽ đường kính AD của đường tròn (O,R)
a) Chứng minh: Tứ giác AKHF nội tiếp
b) Chứng minh DC//BF
c) Chứng minh: AB.AC=AE.AD
d) Cho BC=\(\frac{4\sqrt{2}R}{3}\). Tính theo R diện tích hình tròn ngoại tiếp tam giác HKF
cho tam giác ABC có ba góc nhọn . các đường cao AD,BE,CF của tam giác ABC cắt nhau tại H
a) Chứng minh CEHD nội tiếp trong một đường tròn . xác định vị trí tâm O của đường tròn ngoại tiếp tứ giác CEHD
b) chứng minh góc FEH= góc DEH
Chứng minh H là tâm đường tròn nội tiếp tam giác DEF
c)cho CH= 4cm. Tính độ dài đường tròn (O) và diện tích hình tròn (O)
1 Cho tam giác ABC cân tại A nội tiếp đường tròn (O) . D là một điểm tùy ý trên cạnh
BC, tia AD cắt đường tròn (O) ở E.
Chứng minh:
a) Góc AEC = góc ACB
b) Tam giác AEC đồng dạng với tam giác ACD
2 .
Cho đường tròn (O;R). Từ điểm M nằm ngoài đường tròn kẻ tiếp tuyến ME, MF tới đường tròn
a) Cm M,E,O,F thuộc 1 đường tròn
b) Đoạn OM cắt đường tròn tại I. Cm I là tâm đường tròn nội tiếp tam giác MEF
c) Kẻ đường kính ED. Hạ FK vuông góc vói ED. Gọi P là giao điểm của MD và FK. Cm P là trung điểm của FK
\(P=1-\left(\frac{x+2\sqrt{x}}{x+\sqrt{x}-2}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{2}{\sqrt{x}}-\frac{2-x}{x+\sqrt{x}}\right)\) với x khác 1 , x>0
Cho tam giác ABC cân tại A, góc A = 45 độ, nội tiếp đường tròn (O;R). Tính các cạnh của tam giác ABC theo R
Cho tam giác ADB vuông cân tại D (DA=DB) nội tiếp đường tròn tâm (O). Dựng hình bình hành ABCD. Gọi H là chân đường vuông góc kẻ từ D đến AC; K là giao điểm của AC với đường tròn (O). Chứng minh rằng:
a) Tứ giác HBCD nội tiếp
b) Góc DOK = 2* góc BDH
c) CK*CA=2*BD2