Xét (O) có
ΔBKA nội tiếp
BA là đường kính
Do đó;ΔBKA vuông tại K
Xét ΔBHN vuông tại H và ΔBKA vuông tại K có
\(\widehat{HBN}\) chung
Do đó: ΔBHN~ΔBKA
=>\(\dfrac{BH}{BK}=\dfrac{BN}{BA}\)
=>\(BH\cdot BA=BK\cdot BN\left(1\right)\)
Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
Xét ΔCAB vuông tại C có CH là đường cao
nên \(BH\cdot BA=BC^2\left(2\right)\)
Từ (1),(2) suy ra \(BC^2=BN\cdot BK\)