Cho đường thẳng (d) không cắt đường tròn (O) vẽ đường kính CD vuông góc với (d) tại I. Kẻ tiếp tuyến IA với đường tròn (O). Đường thẳng CA cắt (d) tại B. Chứng minh: IA = IB
Từ một điểm M ở ngoài đường tròn (O), vẽ hai tiếp tuyến MA,MB đến đường tròn ( A,B là hai tiếp điểm). Qua À vẽ đường thẳng song song với MV, cắt đường tròn tại E, đoạn thẳng ME cắt đường tròn tại F. Hai đường thẳng AF và MB cắt nhau tại I. CHỨNG MINH : 1) Tứ giác MAOB nội tiếp đường tròn 2) IB mủ 2 = IF.IA
cho tam giác abc nội tiếp đường tròn tâm o. tia phân giác của góc abc cắt đường tròn tâm o tại d. tiếp tuyến tại d của đường tròn tâm o cắt 2 đường thẳng ab và ac lần lượt tại e và f. a, chứng minh ef song song với cb. b, chứng minh ab.af=ac.ae=ad^2
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của đường tròn (O') cắt đường tròn (O) tại điểm thứ hai P. Tia PB cắt đường tròn (O') tại Q. Chứng minh đường thẳng AQ song song với tiếp tuyến tại P của đường tròn (O).
Cho đường tròn tâm O bán kính R. Lấy ba điểm bất kì A, B, C trên đường tròn (O). Điểm E bất kì thuộc đoạn thẳng AB (và không trùng với A, B). Đường thẳng d đi qua điểm E và vuông góc với đường thẳng OA cắt đoạn thẳng AC tại điểm F.
Chứng minh \(\widehat{BCF}=\widehat{BEF}=180^0\)
2/ Cho tam giác ABC nhọn nội tiếp (O). Qua B kẻ đường thẳng song song với tiếp tuyến tại A của đường tròn, đường thẳng này cắt AC ở M. a/ Chứng minh: AB2 = AC.AM b/ Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp tam giác BCM
Giả sử A và B là hai điểm phân biệt trên đường tròn (O).Các tiếp tuyến của đường tròn (O) tại A và B cách nhau tại M. Từ A kẻ đường thẳng song song với MB, cắt (O) tại C .MC cắt đường tròn (O) tại E. Các tia AE và MB cắt nhau tại K. Chứng minh rằng:
1) MK2 = AK . EK
2) MK = KB