Các tam giác bằng nhau là:
+ \(\Delta KBM\) và \(\Delta KCM.\)
+ \(\Delta EBM\) và \(\Delta ECM.\)
Chúc bạn học tốt!
Các tam giác bằng nhau là:
+ \(\Delta KBM\) và \(\Delta KCM.\)
+ \(\Delta EBM\) và \(\Delta ECM.\)
Chúc bạn học tốt!
cho tam giác abc cân tại a trên tia đốicủa tia bc lấy điểm d,trên tia đối của tia cb lấy điểm e sao cho bd=ce.kẻ bh vuông góc với ad,ck vuông góc với ae[h thuộc ad,k thuộc ae].2 đường thẳng hb và kc cắt nhau tại o.CM:a,tam giác abd=tam giác ace;b,tam giác ade cân;c,tam giác dhb=tam giác ekc;d,tam giác boc cân;e,oa là tia phân giác của góc boc
cho tam giác abc có 3 góc nhọn ,kẻ AH vuông góc với BC . vẽ điểm D và E sao cho AB là đường trung trực của DH và AC là đường trung trực của HE. DE lần lượt cắt AB và AC tại I và K,kẻ DB cắt EC tại G
a)chứng minhHA là tia phân giác góc IHK
b)chứng minh GA là đường trung trục của DE
c)chứng minh góc BAC bằng góc IHB
Cho tam giác cân ABC (AB = AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên BC
Cho tam giác ABC vuông tại A, AB<AC, phân giác BE của góc B. Lấy điểm H thuộc BC sao cho BH=BA
a) Chứng minh EH vuông góc BC
b) Chứng minh BE là đường trung trực của AH
c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK=EC
d) Chứng minh AH//KC
e) Gọi M là trung điểm của KC. Chứng minh 3 điểm B,E,M thẳng hàng
BÀI 8 : Cho tam giác ABC vuông tại C ,Trên cạnh AB lấy điểm D sao cho AD =AB . Kẻ qua D đường thẳng vuông góc với BC tại E . AE cắt CD tại I . a)chứng minh AE là phân giác góc CAB. b) Chứng minh AD là trung trực của CD . c) so sánh CD và BC d) M là trung điểm của BC ,DM cắt BI tại G,CG cắt DB tại K.Chứng minh K là trung điểm của DB
cho tam giác ABC có Â=90o; AB<AC; phân giác BE, E thuộc AC. Lấy điểm H thuộc BC sao cho BH=BA.
a) CM: EH vuông góc vs BC
b) CM: BE là đường trung trực của AH
c) Đường thẳng EH cắt đường thẳng AB ở K. CM: EK=EC
d) CM: AH//KC
e) Gọi M là trung điểm của KC. CM 3 điểm B,E,M thẳng hàng.
Cho ΔABC vuông tại A, đường phân giác BE. Kẻ EH ⏊BC (H thuộc BC). Gọi K là
giao điểm của AB và HE. Chứng minh rằng:
a) ΔABE = ΔHBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC
d) AE < EC
cho tam giác abc vuông tại c trôn cạnh ab lấy d sao cho ad bằng ac kẻ qua d đg thẳng vuông góc với ab cắt bc tại e, ae cắt cd tại i ..a,cm aelaf tia phân giác của góc cab....b,cm ae là đg trung trực của cd ...c, so sánh cd và bc..d,m là trung điêm của bc, dm cắt bi tại g ,cg cắt db tại k cm k là rung điêm của db
Cho tam giác ABC cân tại A ( AB>BC ).Trên tia đối của tia CA lấy điểm D sao cho CD=CA. Kẻ AH vuông góc BC tại H, kẻ DK vuông góc với đường thẳng BC tại K. Chứng minh : a) Tam giác AHC=tam giác DKC b)KC=1/2 BC c)Trên tia đối của tia BC lấy điểm M và trên tia CD lấy điểm N sao cho BM=CN=AB-BC, CHo biết ^BAC=40độ. Tính ^ANM