Trên đoạn thẳng AB ta lấy điểm M’ để có =
Như vậy + = + = ( quy tắc 3 điểm)
Vậy vec tơ chính là vec tơ tổng của và
= + .
Ta lại có – = + (- )
– = + (vectơ đối)
Theo tính chất giao hoán của tổng vectơ ta có
+ = + = (quy tắc 3 điểm)
Vậy – =
Trên đoạn thẳng AB ta lấy điểm M’ để có =
Như vậy + = + = ( quy tắc 3 điểm)
Vậy vec tơ chính là vec tơ tổng của và
= + .
Ta lại có – = + (- )
– = + (vectơ đối)
Theo tính chất giao hoán của tổng vectơ ta có
+ = + = (quy tắc 3 điểm)
Vậy – =
Cho đoạn thẳng AB và điểm M nằm giữa A và B sao cho \(AM>MB\). Vẽ các vectơ \(\overrightarrow{MA}+\overrightarrow{MB}\) và \(\overrightarrow{MA}-\overrightarrow{MB}\) ?
Cho đoạn thẳng AB có AB = 50. Lấy điểm M thuộc đoạn AB sao cho AM = 30. Tính \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\)
Cho hình thang ABCD ( AB // CD ) và điểm M nằm trong hình thang ABCD. Kẻ các hình bình hành MAED, MBFC. Chứng minh hai vectơ EF và vectơ AB cùng phương.
Cho tam giác ABC. I là điểm trên cạnh AC sao cho 4 lần vectơ CI + vectơ AC = vectơ 0 và điểm J thỏa mãn vectơ BJ=1/2 vectơAC -2/3vectơ AB. chứng minh 3 điểm I,J,B thẳng hàng
Cho tam giác ABC có M, N lần lượt là trung điểm của AB và AC, điểm K nằm trên đoạn MN sao cho \(\overrightarrow{KM}=-2\overrightarrow{KN}\). Tính \(\overrightarrow{AK}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AB và CD. Nối AF và CE, 2 đường này cắt đường chéo BD lần lượt tại M và N. Chứng minh vectơ DM = vectơ MN = vectơ NB.
Cho hình bình hành ABCD . Gọi M,N là các điểm thỏa vectơ AM =2/3 AD , vectơ = 1/4BC . Gọi G là trọng tâm của tam giác CMN . Phân tích AG theo AB ,AD
Cho tam giác ABC có M, N, P lần lượt là trung điểm của AB, BC, CA. Tính tổng các vectơ
AM + BN + CP
Cho đoạn thẳng AB, xát định điểm M sao cho |\(\overrightarrow{MA}\)+\(\overrightarrow{MB}\)|=\(\sqrt{3}\)
Cho tam giác abc vuông tại b. AB=3a,BC=4a, vẽ điểm M sao cho Vecto MA+vecto MB-vecto MC=vecto 0,N là trung điểm của AC.Tính a dộ dài của vecto MN