Cho đường tròn tâm O bán kính R và điểm A thuộc đường tròn. Trên tiếp tuyến tại A lấy 1 điểm K cố định. Một đường thẳng (d) thay đổi đi qua K và không đi qua tâm O cắt (O) tại B và C ( B nằm giữa C và K). Gọi M là trung điểm BC.
1.CM: A,O,M,K thuộc 1 đường tròn
2.Vẽ đường kính AN của đường tròn tâm O, đường thẳng qua A và vuông góc vứi BC cắt MN tại H.CM: tứ giác BHCN là hình bình hành.
3.CM: H là trực tâm tam giác ABC.
4. Khi đường thẳng (d) thay đổi và thỏa mãn điều kiện đề bài thì H di động trên đường thẳng nào
Cho nửa đường tròn đường kính AB và M là một điểm bất kì trên nửa đường tròn ( M khác A,B). Đường thẳng d tiếp xúc với đường tròn tại M cắt đường trung trực của AB tại I. Đường tròn (I) tiếp xúc với AB cắt đường thẳng d tại C và D. ( C nằm trong góc AOM và O là trung điểm của AB).
a) CM: OC là phân giác góc AOM ; OD là p/giác góc BOM.
b) CM: AC, BD là hai tiếp tuyến của đường tròn đường kính AB.
c) CM; tam giác AMB đồng dạng tam giác COD .
d)CM; AC.BD=\(\frac{AB^2}{4}\)
Cho (O) và dây AB không phải đường kính. Gọi M là điểm chính giữa cung AB và C là điểm bất kì thuộc AB. Tia CM cắt (O) tại D. Chứng minh:
a. MA2= MC.MD.
b. MB.BD= BC.MD.
c. Đường tròn ngoại tiếp tam giác BCD tiếp xúc với MB tại B.
d. Khi C di động trên AB thì các đường tròn (O1) và (O2) ngoại tiếp tam giác BCD và tam giác ACD có tổng bán kính không đổi.
1 Cho đường tròn tâm O, đường kính AB. Vẽ dây CD\(\perp\)OA tại trung điểm I của OA. Các tiếp tuyến đường tròn tại C và D cắt nhau tại M
a) Tính góc CMD
b) Chứng minh: MC là tiếp tuyến đường tròn tâm B, bán kính BI
2Cho nửa đường tròn tâm O, đường kính AB, M bất kì thuộc nửa đường tròn. Vẽ tiếp tuyến d tại . Vẽ AD,BC vuông góc với d
a) CM: MC=MD
b) CM: tổng AD+BC không đổi khi M thay đổi
c) CM: AD,BC,AB là tiếp tuyến đương tròn đường kính CD
d) Xác định M để SABCD lớn nhất
Cho đường tròn (O;AB) AB=2R và một điểm M trên nửa đường tròn . Vẽ một đường tròn tâm E tiếp xúc với nửa đường tròn (O) tại M và tiếp xúc với đường kính AB tại N . Đường tròn này cắt MA,MB lần lượt tại các điểm C,D
a, CM : CD//AB
b, CM: MN là tia phân giác của góc AMB và đường thẳng MN luon đi qua 1 điểm K cố định
c, CM: KM.KN không đổi
cho tam giác ABC vuông tại A. Lấy B làm tâm vẽ đường tròn tâm B bán kính AB. Lấy C làm tâm vẽ đường tròn tâm C bán kính AC, hai đường tròn này cắt nhau tại điểm thứ 2 là D. Vẽ AM,AN lâng lượt là dây cung của đường tròn B và C sao cho AM vuông góc với AN và D nằm giữa M;N.
a)CM: tam giác ABC=tam giác DBC
b)CM:ABDC là tứ giác nội tiếp
c)CM:Ba điểm M,D,N thẳng hàng
1 Cho đường tròn tâm O, đường kính AB. Vẽ dây CD⊥OA tại trung điểm I của OA. Các tiếp tuyến đường tròn tại C và D cắt nhau tại M
a) Tính góc CMD
b) Chứng minh: MC là tiếp tuyến đường tròn tâm B, bán kính BI
2Cho nửa đường tròn tâm O, đường kính AB,M bất kì thuộc nửa đường tròn.Vẽ tiếp tuyến d tại M . Vẽ AD,BC vuông góc với d
a) CM: MC=MD
b) CM: tổng AD+BC không đổi khi M thay đổi
c) CM: AD,BC,AB là tiếp tuyến đương tròn đường kính CD
d) Xác định M để SABCD lớn nhất
1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn
2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ b) CH . HD = HB . HA c) Biết OH = R/2. Tính diện tích tam giác ACD theo R
3/ Cho tam giác MAB, vẽ đường tròn (O) đường kính AB cắt MA ở C, cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM:
a) CP = DQ b) PD . DQ = PA . BQ và QC . CP = PD . QD c) MH vuông góc AB\
4/ Cho đường tròn (O;5cm) đường kính AB, gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao? b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O') d) Tính độ dài đoạn HI
5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R
6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật
7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)
8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
Bài 1: Cho AB là đường kính của đường tròn (O;R). C là 1 điểm thay đổi trên đường tròn.Kẻ CH vuông góc với
Gọi I là trung điểm của AC,OI cắt tiếp tuyến tại A của đường tròn tại M,MB cắt CH tại K
Xác định vị trí của C để chu vi tam giác ACB đạt GTLN?tìm GTLN đó theo R
Bài 2: Cho đường tròn (O;R) và đường thẳng d không có điểm chung với đường tròn. M là 1 điểm thuộc dt d . Qua M kẻ tiếp tuyến MA,MB với đường tròn. Hạ OH vuông góc với d tại H.Nối Ab cắt OM tại I,OH tại K.Tia OM cắt đường tròn (O;R) tại E
Cm: E là tâm đường tròn nội tiếp tam giác MAB
Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có diên tích lớn nhất
Bài 3 :cho 3 điểm a,b,c cố định nằm trên đường thẳng d(b nằm giữa a và c) .Vẽ đường tròn (0) cố định luôn đi qua B và C (0 là không nằm trên đường thẳng D ).Kẻ AM,AN là các tiếp tuyến với (0) tại M ,N .gọi I là trung điểm của BC,OA cắt MN tại H cắt (0) tại P và Q ( P nằm giữa A và O).BC cắt MN tại K
a.CM: O,M,N,I cùng nằm trên 1 đường tròn
b.CM điểm K cố định
c.Gọi D là trung điểm của HQ.Từ H kẻ đường thẳng vuông góc MD cắt MP tại E
d.Cm: P là trung điểm của ME
Bài 4:Cho đường tròn (O;R) đường kính CD=2R. M là 1 điểm thay đổi trên OC . Vẽ đường tròn (O') đường kính MD. Gọi I là trung điểm của MC,đường thẳng qua I vuông góc với CD cắt (O) tại E,F. đường thẳng ED cắt (O') tại P
a.Cm 3 điểm P,M,F thẳng hàng
b.Cm IP là tiếp tuyến của đường tròn (O;R)
c.Tìm vị trí của M trên OC để diện tích tam giác IPO lớn nhất
Cho đường tròn tâm O và dây AB.Gọi M là điểm chính giữa của cung AB nhỏ. Vẽ đường kính MN cắt AB tại I. Lấy D thuộc dây AB, MD giao với đường trong (O) tại C.
a) c/m rằng : CDIN là tứ giác nội tiếp
b) c/m rằng: MC.MD có giá trị không đổi khi D di động trên dây AB
c) Gọi O’ là tâm đường tròn ngoại tiếp tam giác ACD. Chứng minh góc MAB = 1/2 góc AO’D