Bài 3: Phương trình đường thẳng trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho điểm \(A\left(1;0;0\right)\) và đường thẳng \(\Delta:\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=t\end{matrix}\right.\)

a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng \(\Delta\) ?

b) Tìm tọa độ điểm A' đối xứng với A qua đường thẳng \(\Delta\) ?

Nguyễn Đắc Định
9 tháng 5 2017 lúc 21:49

a) Đường thẳng ∆ có vectơ chỉ phương →uu→(1 ; 2 ; 1). H ∈ ∆ nên H(2 + t ; 1 + 2t ; t).

Điểm H ∈ ∆ là hình chiếu vuông góc của A lên ∆ khi và chỉ khi −−→AHAH→→uu→.

Ta có −−→AHAH→(1+t ; 1 + 2t ; t) nên:

−−→AHAH→→uu→→u.−−→AHu→.AH→ = 0.

⇔ 1 + t + 2(1 + 2t) + t = 0

⇔ 6t + 3 = 0 ⇔ t = −12−12.

H(32;0;−12)H(32;0;−12).

b) Gọi A' là điểm đối xứng của A qua ∆ và H là hình chiếu vuông góc của A lên ∆ thì H là trung điểm của AA'; vì vậy tọa độ của H là trung bình cộng các tọa độ tương ứng của A và A'.

Gọi A'(x ; y ; z) ta có:

x+12=32x+12=32 => x = 2; y = 0; z = -1.

Vậy A'(2 ; 0 ; -1).



Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Thanh Tâm TK
Xem chi tiết
Thái Thùy Linh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết