a. Để d đi qua A; B
\(\Leftrightarrow\left\{{}\begin{matrix}5=2a+b\\-1=-a+b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
b. Theo câu a pt AB có dạng: \(y=2x+1\)
Thế tọa độ C vào pt AB ta được:
\(9=2.4+1\) (thỏa mãn)
Vậy C thuộc AB hay 3 điểm A;B;C thẳng hàng
c. Gọi M là tọa độ giao điểm của AB và Ox
\(\Rightarrow0=2x_M+1\Rightarrow x_M=-\dfrac{1}{2}\Rightarrow OM=\left|x_M\right|=\dfrac{1}{2}\)
Gọi N là giao điểm của AB và Oy
\(\Rightarrow y_N=2.0+1\Rightarrow y_N=1\Rightarrow ON=1\)
Gọi H là hình chiếu vuông góc của O lên AB \(\Rightarrow OH=d\left(O;AB\right)\)
Áp dụng hệ thức lượng:
\(\dfrac{1}{OH^2}=\dfrac{1}{ON^2}+\dfrac{1}{OM^2}=\dfrac{1}{1^2}+\dfrac{1}{\left(\dfrac{1}{2}\right)^2}=5\)
\(\Rightarrow OH=\dfrac{\sqrt{5}}{5}\)