Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhật Nguyễn

Cho điểm A ( -2;0); B (0;4); C (1;1);D (-3;2)
a) Chứng minh 3 điểm A,B,D thẳng hàng; 3 điểm A,B,C không thẳng hàng
b) Tính diện tích tam giác ABC

Giúp tớ với 500 ae hoc24.vn!!!

 

Tô Mì
14 tháng 5 2023 lúc 20:44

(a) Sửa đề điểm \(D\left(-3;-2\right)\)

Gọi phương trình đường thẳng \(AB\) là \(\left(d\right):y=ax+b\). Suy ra, giá trị hoành độ và tung độ của \(A,B\) phải thỏa mãn hàm số. Ta sẽ có : \(\left\{{}\begin{matrix}0=a.\left(-2\right)+b\\4=a.0+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\).

Phương trình đường thẳng \(AB\) là \(\left(d\right):y=2x+4\).

Thay giá trị hoành độ và tung độ của \(D\) vào \(\left(d\right)\Rightarrow-2=2.\left(-3\right)+4\Leftrightarrow-2=-2\) (luôn đúng), do đó \(D\in\left(d\right)\Leftrightarrow A,B,D\) thẳng hàng.

Thay giá trị hoành độ và tung độ của \(C\) vào \(\left(d\right)\Rightarrow1=2.1+4\Leftrightarrow1=6\) (vô lí), do đó \(C\notin\left(d\right)\Leftrightarrow A,B,C\) không thẳng hàng.

(b) Áp dụng công thức khoảng cách giữa hai điểm có tọa độ \(\left(x_1;y_1\right),\left(x_2;y_2\right)\) là : \(d=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}\).

Ta suy ra được : \(\left\{{}\begin{matrix}AB=\sqrt{\left(x_A-x_B\right)^2+\left(y_A-y_B\right)^2}\\AC=\sqrt{\left(x_A-x_C\right)^2+\left(y_A-y_B\right)^2}\\BC=\sqrt{\left(x_B-x_C\right)^2+\left(y_B-y_C\right)^2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{\left(-2-0\right)^2+\left(0-4\right)^2}=2\sqrt{5}\\AC=\sqrt{\left(-2-1\right)^2+\left(0-1\right)^2}=\sqrt{10}\\BC=\sqrt{\left(0-1\right)^2+\left(4-1\right)^2}=\sqrt{10}\end{matrix}\right.\).

Ta thấy : \(\left\{{}\begin{matrix}AC^2+BC^2=\left(\sqrt{10}\right)^2+\left(\sqrt{10}\right)^2=20\\AB^2=\left(2\sqrt{5}\right)^2=20\end{matrix}\right.\)

\(\Rightarrow\Delta ABC\) vuông tại \(C\Rightarrow S_{ABC}=\dfrac{1}{2}BC.AC=\dfrac{1}{2}\sqrt{10}\cdot\sqrt{10}=5\left(đvdt\right)\)


Các câu hỏi tương tự
Minh Nhật
Xem chi tiết
do linh
Xem chi tiết
trần thị minh nhân
Xem chi tiết
Tiên Nguyễn
Xem chi tiết
Nguyễn Minh Sang
Xem chi tiết
vtqv
Xem chi tiết
Mẫn Tuệ
Xem chi tiết
Hiển Dươmg
Xem chi tiết
Sang Nguyen
Xem chi tiết