Cho \(\Delta\)ABC vuông tại A. Kẻ AH \(\perp\)BC. Kẻ HP vuông góc với AB và kéo dài để có PE=PH. Kẻ HQ vuông góc với AC và kéo dài để có QF=QH
a,C/m \(\Delta\)APE=\(\Delta\)APH, \(\Delta\)AQH=\(\Delta\)AQF
b,C/m E,A,F thẳng hàng và A là trung điểm của EF
c,C/m BE//CF
d, Cho AH=3cm.AC=4cm. Tính HC và EF
Giúp với mik đang cần gấp
b)
Vì PE=PH, mà PH lại vuông góc vs AB
=> BP là đường trung trực của EH
=> ∆BEH là tam giác cân
=> Góc E= góc BHE
Tương tự vậy ∆CHF cũng cân
=> Góc F= góc CHF
Lại có HQ vuông góc AB, BA vuông AC( vì BAC là góc vuông)
=> AB//HQ
=> góc PHQ=90độ ( trong cùng phía vs góc AQH)
Vậy ta có góc EHB + góc FHC =90 độ
Ta có góc E+ góc EBH+góc EHB + góc FHC+ góc F+ FCH = 360 độ ( = tổng 6 gióc 2 tam giác BEH và CFH)
<=>2(góc EHB+góc FHC) + góc EBH + góc FCH = 360 độ
<=>2.90 độ + góc EBH + góc FCH = 360 độ
<=> góc EBH + góc FCH = 360 độ - 180 độ = 180 độ
Ta thấy Góc EBH và góc FCH ở vị trí trong cùng phía bù nhau
=>BE//CF