Bài 1: Cho tam giác ABC⊥A, có đường cao AH biết:
AB=6cm, AC=8cm.
a) CMR: △HBA∼△ABC
b) Tính độ dài BC, AH
c) CM: AB^2=BC*BH
d) Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE
cho \(\Delta\)ABC vuông tại A có AB>AC . Lấy M là 1 điểm tùy ý . Qua M kể đường thẳng vuông góc với BC và cắt AB tại I ,cắt AC tại D
a/ CM :\(\Delta ABC\sim\Delta MDC\)
b/ CM : BI.BA=BM.BC
c/ CM : góc BAM=góc ICB từ đó CM: AB là tia phân giác góc MAK (\(CI\cap BD\) tại k)
d/ cho AB=8cm và AC=6 cm . Khi AM là tia phân giác trong\(\Delta ABC\) hãy tính diện tích tứ giác AMBD
Bài 5 :Cho tam giác ABC vuông tại A có AB = 9cm, AC = 12cm. Tia phân giác góc A cắt BC tại D. Từ D kẻ DE vuông góc với AC (E thuộc AC)
a) Tính độ dài các đoạn thẳng BD, CD, DE
b) Tính diện tích tam giác ABD và ACD
Cho tam giác ABC cân tại B, phân giác góc A cắt BC tại M, phân giác của góc C cắt AB tại N
a) Chứng minh ΔABM∼ΔCBN
b) Chứng minh MN//AC
c) Cho AB=10cm; AC=6cm. Tính độ dài đoạn MN
Cho tam giác ABC đồng dạng với tam giác DEF có góc A=30 độ, góc B= 60 độ AC= 6 cm. Số đo góc F là bao nhiêu?
Bài 2 : CHo tam giác ABC vuông tại A có AB=12cm , AC=16 cm . Tia phân giác góc A cắt BD tại D
a, Tính tỉ số diện tích 2 tam giác ABD và ACD
b, Tính độ dài cạnh BC của tam giác
c, Tính độ dài các đoạn thẳng BD và CD
d, Tính chiều cao AH của tam giác
cho tam giác abc vuống tại a có ab=6,ac=8. đường phân giác góc a cắt bc tại d. tính độ dài đoạn thẳng cd
cho tam giác abc vuống tại a có ab=6,ac=8. đường phân giác góc a cắt bc tại d. tính độ dài đoạn thẳng cd