Cho tam giác ABC nhọn có góc A=70 độ và điểm D thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB, gọi F là điểm đối xứng với D qua AC. Đường thẳng EF cắt AB, AC theo thứ tự M ; N.
a) AB cắt ED tại I, DF cát AC tại K.C/m tam giác AEI = tam giac ADI
b) Tính các góc của tam giác AEF
c) Chứng minh rằng DA là tia phân giác của ^MDN
d) Tìm vị trí của điểm D trên cạnh BC để tam giác DMN
có chu vi nhỏ nhất.
Cho tam giác ABC có các đường phân giác BD; CE cắt nhau tại O. Qua A vẽ các đường vuông góc với BD và CE, chúng cắt BC theo thứ tự tại N và M. Gọi H là chân đường vuông góc kẻ từ O đến BC.
a) Chứng minh tam giác CAM cân.
b) Tam giác OMN cân.
c) Chứng minh rằng M đối xứng với N qua OH.
ĐỀ KIỂM TRA 1 TIẾT TOÁN
cho tam giác ABC vuông tại A (AB<AC) đường thẳng qua B song song với AC cất đườngthẳng qua C song song với AB ở D vẽ DH vg BC tại H. Gọi M,N, lần lượt là trung điểm của các đoạn thẳng AC , BH vẽ CE vg BM tại E
a) tứ giác ABDC là hình gì ? vì sao?
b)gọi O là giao điểm của AD và BC . CMR EO=AD/2.<AED=90ĐỘ
c) cmr <MND=90 ĐỘ
cho tam giác ABC cân tại A.Lấy D thuộc AB,trên tia đối của tia CA lấy E sao cho CE=BD.Đường thẳng D song song với BC cắt AC tại F.Gọi K là giao điểm sao cho C là trung điểm của BK.CM:
a)CE=CF
b)BF//EK
c)EK=CD
Cho tam giác ABC cân tại A . Lấy D trên AB , E trên AC sao cho AD = CE . Gọi I là trung điểm của DE , K là giao điểm của AI và BC . Chứng minh rằng : ADEK là hình bình hành
Cho tam giác ABC cân tại A . Lấy điểm D trên canhk AB , trên tia đối của tia AC lấy điểm E sao cho BD = Ce . Gọi F là giao điểm của BC và DE
CMR : F là trung điểm của DE
CẦU THÁNH NHÂN T^T
1. Cho \(\Delta\)ABC. Gọi D là trung điểm của BC, E là điểm thuộc AB. sao cho BE = 2AE, CE cắt AD tại M. C/m M là trung điểm của AD
2. Cho tứ giác lồi ABCD có AB và CD không song song với nhau, gọi M; N lần lượt là trung điểm của BC, AD. C/m MN < \(\dfrac{AB+CD}{2}\)
3. Phân tích :
a) 2x2 + 4x + 2 - 2y2
b) x( x - 2 ) - x + 2
c) 3x3y - 6x2y - 3xy3 - 6axy2 - 3a2xy + 3xy
Hình thoi ABCD cạnh bằng 1cm, P là 1 điểm nằm trên AB, Q ∈ CD sao cho \(\frac{AP}{AB}\) = \(\frac{CQ}{CD}\) = m (0<m<1)
a) Các tứ giác DPBQ, AQCP là hình gì? Vì sao?
b) Gọi I là giao điểm của AD, BQ tính tỉ số \(\frac{IA}{ID}\)
c) Nếu m = \(\frac{1}{3}\) chứng minh ΔBID là Δ vuông
Cho hình thang ABCD, cạnh đáy nhỏ AB, đáy lớn CD. Gọi M là trung điểm của cạnh bên AD. H là trong đường vuông góc hạ từ M đến BC. Sao cho MH = 6cm. BC =9 cm.
a) S BMC =?
b) Qua M vẽ EF // BC , E thuộc AB . Tính diện tích EBCF