Link tham khảo: https://diendan.hocmai.vn/threads/toan-8-hinh-binh-hanh.246891/
Link tham khảo: https://diendan.hocmai.vn/threads/toan-8-hinh-binh-hanh.246891/
Cho \(\Delta\)ABC vuông tại A có AB=12cm , AC=16cm . Vẽ đường cao AH
a) Chứng minh \(\Delta\)HBA \(\sim\) \(\Delta\)ABC
b) Tính BC,AH ?
c) Vẽ đường phân giác AD của tam giác ABC ( D thuộc BC ) . Trong \(\Delta\)ADB kẻ phân giác DE ( E\(\in\)AB ). Trong \(\Delta\)ADC kẻ phân giác DF ( F\(\in\)AC ). Chứng minh \(\dfrac{EA}{EB}\times\dfrac{DB}{DC}\times\dfrac{FC}{FA}=1\)
Cho \(\Delta ABC\) vuông tại A (AB<AC) có I là trung điểm của BC. Gọi D là điểm đối xứng của A qua I
a) C/m ABCD là hình chữ nhật
b) Gọi E là điểm đối xứng của B qua A. C/m ADCE là hình bình hành
c) Vẽ \(BF\perp EC\) tại F. C/m \(\Delta AFD\:\) vuông
d) Gọi M,N,P lần lượt là hình chiếu của B,I,C lên đường thẳng AF. C/m AM=FP
Cho tam giác ABC vuông tại A, vẽ đường cao AH(H∈BC).
a)Chứng minh: ΔHBAᔕΔABC
b)Chứng minh:ΔHBAᔕΔHAC .Suy ra: AH2=BH.HC
c)Kẻ HD⊥AB và HE⊥AC (D∈AB,E∈AC). Chứng minh: ΔAEDᔕΔABC
d)Nếu AB.AC=4AD.AE thì ΔABC là tam giác gì?
Cho tam giác ABC vuông tại A, đường cao AH, AB = 6cm, AC = 8cm.
a) Tính AH, HB, HC
b) Gọi M là trung điểm của BC, D và E là hình chiếu của H trên AB, AC. Chứng minh AD.AB = AE.AC. Từ đó suy ra \(\Delta AED\) đồng dạng \(\Delta ABC\)
c) Chứng minh \(DE\perp AM\)
Cho tam giác ABC cân tại A và góc A tù. các đường trung trực của AB, AC cắt nhau tại O và cắt BC lần lượt tại các điểm D và E. Chứng minh rằng:
a) Các tam giác ABD,AEC,ACE,DOE là các tam giác cân
b) ΔADE = ΔAEC
c) OA = OB = OC
Cho tam giác ABC vuông tại A có đường cao AH a. Chứng minh tam giác ABC đồng dạng tam giác HBA b. Cho biết BH =2cm, BC =6cm.tính AB c. Đường phân giác của góc B cắt AH tại I.chứng minh IA×AH=IH×AC
Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H
1. Chứng minh tam giác ABE và tam giác ACF đồng dạng
Xét \(\Delta ABE\) và \(\Delta ACF\) :
\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)
2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)
Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)
Xét tam giác AEF và tam giác ABC:
\(\widehat{A}\) chung
\(\dfrac{AB}{AC}=\dfrac{AF}{AE}\) (cmt )
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) ( hai góc t/ứ)
3.Vẽ DM vuông gosc với AC tại M . Gọi K là giao điểm của CH và DM . Chứng minh \(\dfrac{BH}{EH}=\dfrac{DK}{MK}\) và \(AH.AD+CH.CF=\dfrac{CD^4}{CM^2}\)
Bài 2 : Cho ba số \(x,y,z\) khác 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) . Tính giá trị của biểu thức \(P=\dfrac{2017}{3}xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)
Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi M là trung điểm BC . Từ M vẽ MDIAB tại D và MELAC tại E. Chứng minh : Tứ giác ADME là hình chữ nhật . b / Chứng minh : D là trung điểm đoạn AB và tứ giác BDEM là hình bình hành . c / Vẽ AH BC tại H. Gọi K là giao điểm của AH và DE . Đường thẳng DH cắt BK tại J và I là trung điểm của MK . Chứng minh : là trọng tâm AABH và ba điểm C , I , J thẳng hàng
Cho \(\Delta\)ABC vuông tại A,kẻ đường cao AH
1)Chứng minh:\(\Delta\)ABC đồng dạng \(\Delta\)HAC
2)Cho AB=6cm,AC=8cm.Tính BC,AH
3)Từ H kẻ HE\(\perp\)AC.Chứng minh:\(^{HE^2}\)=EA.EC
4)Gọi I là trung điểm của AH,EI cắt AB tại F.Chứng minh:\(^{AH^2}\)=FA.FB+EA.EC