Bài 10. Cho đường tròn bán kính AB, M là điểm (O). AM cắt tiếp tuyến của đường tròn (O) tại B ở C
a. Chứng minh ΔAMB vuông tại M
b. Tính tích AM.AC theo R
c. Qua O vẽ đường thẳng vuông góc MB cắt MB tại I, cắt BC tại D. Chứng minh MD là tiếp diện của đường tròn (O)
E đang cần gấp ạ
Cho nửa đường tròn tâm O đường kính AB. LẤY điểm C nằm giữa A và B. Qua C kẻ đường thẳng vuông góc với AB cắt đường tròn tâm O tại I. Trên cung nhỏ BI lấy điểm M ( M khác B và I ) BM cắt CI tại D a) Chứng minh tứ giác ACMD nội tiếp b) Tiếp tuyến tại M của đường tròn tâm O cắt CI tại N. Gọi giao điểm của AM và CI là K. Chứng minh tam giác NMK cân c) Khi M thay đổi trên cung nhỏ BI chứng minh đường tròn ngoại tiếp tam giác AKD luôn đi qua một điểm cố định khác điểm A Giúp với ạ
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB và cát tuyến MCD với đường tròn (O), trong đó điểm C ở giữa hai điểm M, D. Đường thẳng qua điểm C và vuông góc với OA cắt AB tại H. Gọi I là trung điểm của dây CD.
Chứng minh : HI // AD
Cho đường tròn (O;R) từ M nằm ngoài đường tròn (O;R) vẽ tiếp tuyến MA (A là tiếp điểm) . Vẽ AH vuông góc với OM
a) Tính OH.OM theo R
b) Vẽ đường kính AB, BM cắt đường tròn (O;R) tại C. Vẽ OI vuông góc với BC tại I. CMR: OI//AC
c) CM: MH.MO= MB.MC
d) Biết OH cắt OI và BC tại N và K. CMR: HK+HN> 2.AH
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O). Các đường cao BE, CF cắt nhau tại H. Gọi G là giao điểm của EF, BC. Đường thẳng đi qua A và vuông góc với GH tại I cắt BC tại M. Các tiếp tuyến với (O) tại B,C cắt nhau tại S.
a) Chứng minh tứ giác GFIC nội tiếp.
b) Chứng minh M là trung điểm của BC và tam giác AEM đồng dạng với tam giác ABS.
Cho nửa đường tròn (O;R) đường kính AB và một điểm M trên đường tròn (M khác A và B). Tiếp tuyến tại A và B của (O) cắt tiếp tuyến tại M theo thứ tự ở C và D.
a) AC + BD = CD và AC.BD không đổi.
b) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
c) Giả sử
. Tính diện tích tứ giác OMDB theo R.
Cho tam giác ABC vuông ở A. Trên AC lấy một điểm M và vẽ đường tròn đường kính MC. Kẻ BM cắt đường tròn tại D. Đường thẳng DA cắt đường tròn tại S. Chứng minh rằng:
a) ABCD là một tứ giác nội tiếp;
b) \(\widehat{ABD}=\widehat{ACD};\)
c) CA là tia phân giác của góc SCB.
Cho hai đường tròn (O;2cm) và (O’;1cm) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC (B (O) và C(O’)). Tiếp tuyến chung trong tại A, cắt BC ở I.
a) Tính số đo góc OIO’
b) Tính độ dài BC
c) Chứng minh rằng OO’ là tiếp tuyến của đường tròn đường kính BC
d) Gọi K là giao điểm của BC và OO’. Tính độ dài OK.
Giúp mình vớiiiii
Cứu với các tiền bối ơi!!!!!!!
Cho nửa đường tròn (O) đường kính AB. Trên OA lấy I, qua I vẽ đường thẳng (d) vuông góc với OA cắt nửa đường tròn tại C. Trên cung BC lấy M, tia AM cắt CI tại K . Tia BM cắt đường thẳng (d) tại D. AD cắt nửa đường tròn tại M. Chứng minh: K là tâm đường tròn nội tiếp ∆MNI.