Với a = 1, b = 4, c = 2, d = 3 thì a + b = 5 =c + d.
Biến đổi: P(x) = (x + 1)(x + 4)( x + 2)( x + 3) – 15
= (x2 + 5x + 4)(x2 + 5x + 6) – 15
Đặt y = x2 + 5x + 4 thì P(x) trở thành
Q(y) = y(y + 2) – 1
= y2 +2y – 15
= y2 – 3y + 5y – 15
= y(y – 3) + 5( y – 3)
= (y – 3)(y + 5)
Do đó: P(x) = (x2 +5x + 1)(x2 + 5x + 9)