Cho tam giác ABC có góc A nhọn và AB = 3, AC=5, Sin A = 3/5. Gọi G là trọng tâm tam giác ABC và O là tâm đường tròn ngoại tiếp tam giác ABC
Tính độ dài đoạn thẳng OG
Cho tam giác ABC có M, N, P lần lượt là trung điểm ba cạnh BC, CA và AB. Tam giác MNP có
tâm đường tròn ngoại tiếp là J( 3;4) và trọng tâm G( 1;2) Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC.
A.I(1;0) B.I(3; 2) C.I( 5;6) D.I( 2;3).
Cho tam giác ABC , AB> AC ngoại tiếp đường tròn (I ) và nội tiếp đường tròn (O). Đường tròn (I ) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi H là hình chiếu vuông góc của D trên EF. Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại K (K khác A).
a) Chứng minh HD là phân giác của góc BHC .
b) Chứng minh ba điểm I, H, K thẳng hàng.
Trong mặt phẳng tọa độ Oxy cho tam giác ABC có trực tâm H, trọng tâm G(-1;3). Gọi K, M, N lần lượt là trung điểm của AH, AB, AC. Tìm phương trình đường tròn ngoại tiếp tam giác ABC biết rằng đường tròn ngoại tiếp tam giác KMN là (C): x2+y2+4x-4y-17=0.
Cho tam giác không cân ABC. Gọi H, O lần lượt là trực tâm, tâm đường tròn ngoại tiếp của tam giác, M là trung điểm của cạnh BC. Khẳng định nào sau đây là đúng?
A. Tam giác ABC nhọn thì A H → , O M → cùng hướng
B. A H → , O M → luôn cùng hướng
C. A H → , O M → cùng phương nhưng ngược hướng
D. A H → , O M → có cùng giá
Bài 4 : ( 3,5 điểm)Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF, Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 60o, AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của góc DFE
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại 1 điểm
Cho tam giác ABC nội tiếp đường tròn (O) và M là một điểm bất kì trên (O). Gọi D, E, F lần lượt là hình chiếu vuông góc của M trên các đường thẳng AB, BC, CA. Chứng minh D, E, F thẳng hàng
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O. Gọi H là trực tâm của tam giác ABC. Gọi M,N lần lượt là trung điểm của BC và AH. Chứng minh: vecto OM = vecto AN
Cho tam giác ABC có O,G,H lần lượt là tâm đường tròn ngoại tiếp,trọng tâm,trực tâm và I là tâm đường tròn đi qua các trung điểm của ba cạnh tam giác.Chứng minh các hệ thức sau
a)\(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OH}\)
b)\(\overrightarrow{OH=3\overrightarrow{OG}}\)
c)\(\overrightarrow{HA}+\overrightarrow{HB}+\overrightarrow{HC}=2\overrightarrow{OH}\)
d)\(\overrightarrow{OH}=2\overrightarrow{OI}\)