Cho tam giác ABC vuông tại A đường cao AH. Gọi I, K lần lượt là hình chiếu của H trên AB và AC. Biết AB=c, AC=b
a) Tính AI, AK theo b, c
b) CMR: \(\frac{BI}{CK}=\left(\frac{c}{b}\right)^3\)
Cho tam giác ABC vuông tại A có AH là dường cao. Gọi I,K lần lượt là hình chiếu của H lên AB và AC. Biết BC= 10 cm; AH = 4 cm
CMR a AH=IK
b AB.AI= AK. AC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Biết AH/AC = 3/5 và AB = 15cm.
a) Tính HB, HC
b) CM \(\frac{AB^3}{AC^3}=\frac{BE}{CF}\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB, AC. CM:
a) AN.AC=HB.HC
b) \(\frac{HB}{HC}\)= \(\left(\frac{AB}{AC}\right)^2\)
c) \(\frac{BM}{CN}\)= \(\frac{AB^3}{AC^3}\)
d) AH3=MB.BC.CN
1, cho tam giác ABC vuông tại A có BC= 12cm và AB=\(\frac{2}{3}\) AC. Tính chiều dài các cạnh góc vuông và hình chiếu của chúng trên cạnh huyền.
2, Cho tam giác ABC vuông tại A đường cao AH, đường phân giác AD. Biết BD=15cm, DC=20cm . Tính BC, AB, AC, AH, HD.
3, Cho tam giác ABC vuông tại A đường cao AH. Gọi I, J lần lượt là hình chiếu của H trên AB và AC . CM tỉ lệ thức \(\frac{BI}{CJ}=\frac{AB^3}{AC^3}\)
Cho tam giác ABC vg tại A , đường cao AH , E, F lần lượt là hình chiếu của H lên AB và AC .CM:
a) BC2 = 3AH2 + BF2 + CF2
b) \(\frac{AB^2}{AC^2}\)= \(\frac{HB}{HC}\)
C) \(\frac{AB^3}{AC^3}\) = \(\frac{BE}{CF}\)
d) AH3 = BC. HE .HF
cho tam giác ABC vuông tại A đường cao AH. Gọi E,F lần lượt là hình chiếu của H trên AB, AC. C/m
a) \(\dfrac{EB}{FC}\)=\(\left(\dfrac{AB}{AC}\right)^3\)
b) BC.BE.CF = AH3
Cho tam giác ABC tại A có AH là đường cao . Kẻ HD vuông góc với AB tại D và HE vuông góc với AC tại E .
a) CM \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\) sau đó suy ra \(\frac{AB^{\text{4}}}{AC^4}=\frac{BH^2}{CH^2}\)
b) Cm \(\frac{AB^3}{AC^3}=\frac{BD}{CE}\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu của H trên AB, AC. Chứng minh:
a) \(BC^2=3AH^2+BE^2+CF^2\)
b) \(\dfrac{AB^3}{AC^3}=\dfrac{BE}{CF}\)