Cho tam giác ABC vuông tai A có góc C = 15 độ , BC= 4 cm
a) Kẻ đường cao AH, đường trung tuyến AM . Tính góc AMH , AH, AM , HM , HC
b) Chứng minh rằng : cos15độ = \(\dfrac{\sqrt{6}+\sqrt{2}}{4}\)
Cho ΔABCvuông tạ A có ^C=15o, BC=4cm
a) Kẻ đường cao AH,đường trung tuyến AM. TÍnh ^AMH, AH,AM,HM,HC
b) CMR: \(\cos15^o=\dfrac{\sqrt{6}+\sqrt{2}}{4}\)
Cho ΔABC vuông tại A, kẻ đường cao AH. Biết BC = 5cm, = 30O
a) Giải tam giác vuông ABC, Tính AH, HB, HC.
b) Qua C kẻ đường thẳng vuông góc AC, cắt AH tại M. Chứng minh AH. AM = CH. CB
Cho tam giác ABC vuông tại A có AB= 16cm ;AC =12cm, đường cao AH. Trên tia đối của tia CB lấy điểm E. Vẽ HN vuông góc với AE tại N. a) Tính BC; AH;HB và số đo góc B b) Chứng minh AN.AE = HB .HC c) Vẽ HM vuông góc với AB tại M. Chứng minh :AE = 3 AM biết rằng BE =3 MN
Cho tam giác ABC vuông tại A, đường phân giác AD. Chứng minh rằng √2/AD = 1/AB + 1/AC. Kẻ đường cao AH và đường trung tuyến AM của tam giác ABC chứng minh rằng nếu 1/ah^2+1/am^2=2/ad^2. Giúp mình câu 2 thôi ạ mình cảm ơn
cho ΔABc vuông tại A, kẻ đường trung tuyến AM và đường cao A. Gọi D,E lần lượt là hình chiếu của H trên AB,AC.
a) Chứng minh rằng DE2=BH.HC
b) Chứng minh DE vuông góc AM
cho tam giác abc vuông tại a (ab< ac) đường cao ah
a) chứng minh : \(\frac{AB^2^{ }}{AC^2}=\frac{BC}{CH}\)
b) Từ B kẻ đường thẳng vuông góc tới trung tuyến AM cắt AH tại D, AM tại E, AC tại F. C/m:
- D là trung điểm của BF
- BE.BF=BH.BC
Cho tam giác ABC vuông tại A, đường cao AH. Biết AB=6cm. AC=8cm a) Tính BC,AH, góc B,góc C b) Vẽ AM là đường trung tuyến của tam giác ABC (M thuộc BC) . Chứng minh góc BAH= góc MAC c) Vẻ HE vuông góc AB (E thuộc AB), HF vuông góc AC (F thuộc AC) . Chứng minh EF vuông góc AM tại K và tính độ dài AK
Cho tam giác ABC vuông tại A đường cao AH
a) Biết BH = 4cm , CH= 9cm. Tính AB, HC, HÀ, 9 sin B + 6 cos B -3 tanC
b) MN lần lượt là hình chiếu song song lên AB, AC
Chứng minh AH^2=AM*AN*BC
c) Chứng minh
(AB/AC)^2 = BM/CN