a: Xét ΔADI và ΔBDI có
AD=BD
DI chung
AI=BI
Do đó: ΔADI=ΔBDI
a: Xét ΔADI và ΔBDI có
AD=BD
DI chung
AI=BI
Do đó: ΔADI=ΔBDI
Cho ABC vuông tại A, tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy E sao cho BE = BA.
a) Chứng minh: AD = DE và DE BC.
b) Gọi I là giao điểm của AE và BD. Chứng minh: BI AE.
c) Từ A kẻ AM song song với DE (M BD).
Chứng minh: AE là phân giác góc MAD.
d) Kẻ EK AB (K AB). Chứng minh: E, M, K thẳng hàng.
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh BC lấy E sao cho BE bằng BA.
a) Chứng minh AD = DE và DE vuông góc BC.
b) Gọi I là giao điểm của AE và BD. Chứng minh: BI vuông góc AE.
c) Từ A kẻ AM song song với DE (M thuộc BD) Chứng minh: AE là phân giác góc MAD.
d) Kẻ EK vuông góc AB (K thuộc AB) Chứng minh: E, M, K thẳng hàng
Cho tam giác ABC có AB < AC. Trên cạnh AC lấy AD = AB. Gọi E là trung điểm của BD. A) chứng minh AE là tia phân giác của góc BAC. B) Chứng minh AE vuông góc với BD. C) Tia AE cắt cạnh BC tại F. chứng minh BF = FD. D) Trên tia đối của tia BA lấy G sao cho BG = CD. Chứng minh G, F, D thẳng hàng.
1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M
A. chứng minh tam giác ABC bằng tam giác MBE
B. chứng minh DM vuông góc với BC
C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC
câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)
A. chứng minh tam giác ABD bằng tam giác ACD
B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC
C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân
D. Chứng minh ba điểm B, G, E thẳng hàng
Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm K sao cho MK bằng MH
a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH
B. Chứng minh AB song song với HK và BK = AH.
C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng
câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.
A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD
B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân
Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA
a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông
b. tia ED cắt tia BA tại EF. Chứng minh tam giác BED cân
C. Chứng minh tam giác AFC bằng tam giác ECF
D.Chứng minh: AB + AC >DE+BC
câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC
a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD
B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC
C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng
câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)
A . Chứng minh tam giác ABD bằng tam giác ACD
B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC
c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH
Bài 2. Cho ABC có A = 120°. Tia phân giác của A cắt BC tại D. Tia phân giác của
ADC cắt AC tại I. Gọi H, K, E lần lượt là hình chiếu của I trên đương thẳng AB,
BC, AD. Chứng minh:
a) AC là tia phân giác của DAH .
b) IH = IK
Bài 5. Cho tam giác ABC vuông tại A. Từ một điểm K bất kì trên cạnh BC, vẽ KH
AC (HAC). Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng
minh:
a) Chứng minh AB //HK
b) Chứng minh KAH IAH
c) Chứng minh AKI cân
Bài 7. Cho ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao
cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh:
a) BE = CD b) BMD = CME
c) Đường vuông góc với OE tại E cắt Ox, Oy lần lượt tại M, N. Chứng minh
MN / / AC //BD.
Bài 8. Cho xOy . Lấy các điểm A,B thuộc tia Ox sao cho OA > OB. Lấy các điểm C, D
thuộc Oy sao cho OC = OA, OD = OB. Gọi E là giao điểm của AD và BC
Chứng minh.:
a) AD = BC b) ABE = CDE
c) OE là tia phân giác của góc xOy
Cho tam giác ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho AB=AD. Kẻ tia Ax là tia phân giác góc BAC, tia này cắt BD tại H
a) Chứng minh H là trung điểm của cạnh BD
b) Trên tia AB lấy điểm E sao cho AE=AC. Gọi F là giao điểm của Ax và BC. Chứng minh: ba điểm D,E,F cùng nằm trên một đường thẳng.
Cho tam giác ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho AB=AD. Kẻ tia Ax là tia phân giác góc BAC, tia này cắt BD tại H
a) Chứng minh H là trung điểm của cạnh BD
b) Trên tia AB lấy điểm E sao cho AE=AC. Gọi F là giao điểm của Ax và BC. Chứng minh: ba điểm D,E,F cùng nằm trên một đường thẳng.
Cho tam giác ABC vuông tại A . Tia phân giác của góc B cắt AC ở D, E là điểm trên cạnh BC sao cho BE = BA .
a) gọi F là giao điểm của DE và AB . chứng minh rằng DC = DF
b) Chứng minh AD< DC
c) Chứng minh BD là đường trung trực của AE và AE // FC
cho tam giác ABC vuông tại A (AB<AC).Trên cạnh AC lấy điểm D sao cho AD=AB;Gọi M là trung điểm của BD,Tia AM cắt BC tại K.
a,Chứng Minh: tam giác AMB = tam giác AMD
b,Chứng Minh:BK=DK
c,Trên tia đối của tia BA lấy điểm E sao cho BE=CD.Chứng minh 3 điểm D,K,E thẳng hàng