Bài này cần vẽ thêm hình phụ nha !!
Kẻ DM // AE
\(\Rightarrow\Delta BDM\) cân tại D
\(\Rightarrow BD=DM=CE\)
Dễ dàng chỉ ra được hai tam giác MDF = tam giác CEF (g-c-g )
\(\Rightarrow DK=KE\)
Do đó, F là trung điểm của DE. (đpcm)
Bài này cần vẽ thêm hình phụ nha !!
Kẻ DM // AE
\(\Rightarrow\Delta BDM\) cân tại D
\(\Rightarrow BD=DM=CE\)
Dễ dàng chỉ ra được hai tam giác MDF = tam giác CEF (g-c-g )
\(\Rightarrow DK=KE\)
Do đó, F là trung điểm của DE. (đpcm)
Bài 3: Cho tam giác ABC cân tại A. Lấy điểm D trên cạnh BC, trên tia đối của tia CB lấy điểm E sao
cho CE=BD. Các đường thẳng vuông góc với BC tại D và E lần lượt cắt các đường thẳng AB và AC
theo thứ tự tại M, N. Gọi I là giao điểm của MN với BC.
a/ Chứng minh rằng I là trung điểm của MN.
b/ Chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định.
1. Cho tam giác cân ABC, AB=AC. Trên cạnh BC lấy D. Trên tia đối của BC lấy E sao cho BD=BE. các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CM:
a, DM=ED
b, Đường thằng BC cắt Mn tại I là trung điểm của MN
2. Cho tam giác ABC có góc B và góc c nhỏ hơn 90 độ. Vẽ ra phía ngoài tam giác ấy các tam giác vuông cân ABD và ACE (trong đó góc ABD và góc ACE đều bằng 90 độ), vẽ DI và EK cùng vuông góc với đường thẳng BC. CM:
a, BI=CK; EK=HC
b, BC=DI+EK
3. Cho M, N lần lượt là trung điểm của các cạnh AB và AC của tam giác ABC. Các đường phân giác và phân giác ngoài của tam giác kẻ từ B cắt đường thẳng MN lần lượt tại D và E các tia AD và AE cắt đường thẳng BCtheo thứ tự tại P và Q. CM:
a, BD\(\perp\)AP và BE\(\perp\) AQ
b, B là trung điểm của BQ
c, AB=DE
Cho góc xOy khác góc bẹt. Oz là tia phân giác của góc xOy .Qua D thuộc tia Oz kẻ đường thẳng vuông góc với tia Oz cắt tia Ox ,Oy tại A,B
Chứng minh:
a, tam giác AOD= tam giác BOD và D là trung điểm của AB
B, Qua D kẻ đường thẳng vuông góc với tia Ox tại M cắt tia Oy tại F .Qua D kẻ đường thẳng vuông góc với tia Oy tại M cắt Ox tại E
Chứng minh:
+ DB là tia phân giác của góc NDE
+ MN//AB
Cho tam giác ABC vuông tại A đường phân giác BD qua D kẻ đường thẳng vuông góc với BC tại E cắt BD tại F
Chứng Minh: D là giao điểm của 3 đường phân giác của tam giác AEF
Cho tam giác ABC vuông tại A có AB=5cm, BC=10cm.
a,Tính AC
b, vẽ đường phân giác BD của tam giác ABC và gọi E là hình chiếu của D trên BC. CM: tam giac ABD=tam giác EBD và BD vuông AE
c,Gọi giao điểm của hai đường thẳng ED và BA tại F. CM: tam giác ABC = tam giác AFC
d, qua A vẽ đường thẳng song song với BC cắt C tại G. CM:B,D, G thẳng hàng
cho tam giác ABC vuông taị A, đường phân giác BD. kẻ DE vuông góc vs BC ( E thuoc BC) . Trên tia đối của tia AB lấy điểm F / AF= CE. CMR:
a. tam giá ABD= EBD
b. BD là đường trung trực của đoạn AE
c. AD< DC
d. E , D ,F thẳng hàng
e. AE// FC
HELP ME!-!
cho tam giác ABC cân tại A, vẽ trung tuyến AM. Từ M kẻ ME vuông góc với AB tại E, kẻ MF vuông góc ới AC tại F
a) tam giác BEM = tam giác CFM
b) AM là trung trực của È
c) từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường vuông góc với AC tại C, hai đường thẳng này cắt nhau tại D. Chứng minh rằng ba điểm A, G, H thẳng hàng
Cho tam giác ABC vuông tại A, phân giác của góc B cắt AC tại M . Kẻ MD vuông góc với BC (D thuộc BC).
a. Chứng minh BA=BD.
b. Gọi điểm E là giao của hai đường thẳng DM và BA. Chứng minh : tam giác ABC = tam giác DBE.
c. Kẻ DH vuông góc với MC tại H và AK vuông góc với ME tại K . Gọi N là giao của hai tia DH và AK . Chứng minh : MN là tia phân giác của góc HMK.
d.Chứng minh: Ba điểm B,M,N thẳng hàng.