Cho ΔABC cân tại A, đường cao BH. Trên đáy BC lấy M, MD vuông góc AB, ME vuông góc AC, MF vuông góc BH. Chứng minh ΔDMB = ΔFMB
Bài toán 13. Cho ΔABC vuông cân tại A, trung tuyến AM. Lấy E ∈ BC. BH, CK ⊥ AE (H, K ∈ AE). Chứng minh rằng Δ MHK vuông cân.
Bài toán 14. Cho ΔABC có góc ABC = 500; góc BAC = 700. Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400. Chứng minh rằng: BN = MC.
Bài toán 15. Cho ΔABC. Vẽ ra phía ngoài của tam giác này các tam giác vuông cân ở A là ABE và ACF. Vẽ AH ⊥ BC. Đường thẳng AH cắt EF tại O. Chứng minh rằng O là trung điểm của EF.
cho ΔABC cân tại A, có góc BAC nhọn, qua A vẽ tia phân giác BAC cắt BC tại D a, chứng minh Δ ABD= ΔACD b, Vẽ đường trung tuyến CF cuả ΔABC cắt AD tại G chứng minh G là trọng tâm của ΔABC c, Gọi H là trung điểm của DC . Qua H vẽ đường thẳng vuông góc với cạnh DC cắt AC tại E. chưng minh ΔDEC câb d, chứng minh ba điểm BGE thẳng hàng và AD > BD.
Cho tam ABC cân tại A , có góc BAC = 90 độ . Gọi M , N lần lượt là trung điểm của các đoạn AB , AC . Kẻ NH vuông góc với CM tại H , AK vuông góc với CM tại K .
a, Chứng minh : tam giác CHN = tam giác AKM và tam giác CHA = tam giác AKB
b, Chứng minh : tam giác ABH cân tại B
c, Kẻ HE vuông góc với AB tại E chưng minh : Hm là phân giác góc BHE
Mọi người ơi giúp mik bài này vs , mik cảm ơn nhìu nhaa
Cho tam giác ABC cân tại a kẻ BH vuông góc với AC ck vuông góc với AB H thuộc AC K thuộc AB Chứng minh tam giác akh là tam giác cân Gọi I là giao điểm của AH và ckAI cắt BC tại MCChứng minh rằng im là phân giác của byc Chứng minh HK song song với BC
Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
:)) giúp mính nhé!! Hehe
cho tam giác abc vuông tạ a . Đường phân giác của góc b cắt ac tại d dh vuông góc với bc .
a. Chứng minh tam giác abd bằng tam giác hbd
b. dk cắt ab tại k . Chứng minh tam giác kdc cân
Trên tia đối của các tia BC và CB của ΔABC cân tại đỉnh A lấy theo thứ tự 2 điểm D và E sao cho BD= CE
a. CMR: ΔACE= ΔADB. Từ đó suy ra ΔACE cân tại A
b. Gọi AM là trung tuyến của ΔABC. Chứng minh AM là tia phân giác của góc DAE
c. Từ B và C kẻ BH và CK vuông góc với AD= AE. HB và KC lần lượt cắt AM tại O và O'. Chứng minh: O và O' trùng nhau
Cho tam giác ABC cân tại A . Kẻ BD vuông góc với đường thẳng AC tại D . Lấy điểm E bất kì trên cạnh BC ( E khác B , khác C ) . Kẻ EF , EG , EH lần lượt vuông góc với AB ,AC , BD .
1. Chứng minh rằng tam giác HBE bằng tam giác FEB
2. Chứng minh rằng EF + EG = BD
3. Trên tia đối của tia CA , lấy điểm K sao cho KC = BF ; BC cắt FK tại I . Chứng minh rằng I là trung điểm của FK
4. Nêu cách xác định vị trí của điểm E trên BC để tam giác EGH vuông cân
Giúp mk câu 3;4 thôi ạ!