a) Xét ΔAEB vuông tại E và ΔADC vuông tại D có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔAEB=ΔADC(cạnh huyền-góc nhọn)
Suy ra: AE=AD(Hai cạnh tương ứng)
a) Xét ΔAEB vuông tại E và ΔADC vuông tại D có
AB=AC(ΔABC cân tại A)
\(\widehat{BAE}\) chung
Do đó: ΔAEB=ΔADC(cạnh huyền-góc nhọn)
Suy ra: AE=AD(Hai cạnh tương ứng)
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM a BE là tia phân giác của góc ABC b AG đi qua trung điểm của DC
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM a BE là tia phân giác của góc ABC b AG đi qua trung điểm của DC
Cho ΔABC có AB=AC, kẻ AH ⊥ BC (H ∈ BC )
a) CM: ΔAHB = ΔAHC
b) Từ H kẻ đường thẳng // với AC, cắt AB tại D. CM: ΔADH là Δ cân
c) Gọi G là giao điểm CD và AH. CM: G là trọng tâm của tam giác ABC
d) CM: AB+AC+BC> AH+BG
cho tam giác ABC vuông tại A lấy D trên BC sao cho BD=AB kẻ DE vuông góc BC gọi I là giao điểm của BE và AD M là trung điểm của AC CI cắt DM tại G CM
a BE là tia phân giác của góc ABC
b AG đi qua trung điểm của DC
cho tam giács abc có ab<ac<bc tia phân giác của góc a cắt bc tại d tia phân giác của góc b cắt ac tại e hai tia phân giác ad và be cắt nhau tại i
a. so sánh ia và ib
b. so sánh bd và cd
giúp mk nha mk đang cần gấp á
Cho tam giác ABC vuông tại A tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho AB = BE. a/ Chứng minh AD = DE và DE vuông góc BC b/ So sánh AB và EC
Cho tam iác ABC cân tại A (góc BAC<90°),kẻ BM vuông góc với AC tại M,CN vuông góc với AB tại N.Trên tia đối của tia MB lấy điểm E sao cho ME=CN.Tia phân giác góc CAE cắt BE tại H
a)Chứng minh:BN=CM và MN//BC
b)Chứng minh AC=AE
Bài 1: Cho tam giác ABC cân tại A, chu vi bằng 20cm, cạnh đáy bằng 8cm. Hãy so sánh các góc của tam giác
Bài 2: Cho tam giác ABC, biết độ dài các cạnh tam giác có tỉ lệ AB:AC:BC = 3:4:5. Hãy so sánh các góc của tam giác
Bài 3: Cho tam giác ABC, góc A là góc tù. Trên cạnh AC lấy điểm D, E sao cho D nằm giữa A và E. Chứng minh rằng BA < BD < BE < BC
Bài 4: Cho tam giác ABC vuông tại B, CD là tia phân giác của góc C. Từ D kẻ đường thẳng vuông góc với AC tại E. Chứng minh rằng DE = DB < DA
Bài 5: Cho tam giác ABC có AB < AC. Gọi M là trung điểm BC. Trên tia đối của MA lấy điểm D sao cho MD = MA. Hãy so sánh góc CDA và góc CAD
Bài 6: Cho tam giác ABC có AB > AC, BN là phân giác của góc ABC, CM là phân giác của ACB, I là giao điểm của BN, CM. Hãy so sánh IC và IB, AM và BM
Bài 7: Cho tam giác ABC, có AB < AC. M là trung điểm của BC, AD là phân giác góc BAC. Chứng minh rằng:
a) Góc AMB < góc AMC
b) Goác MAB > góc CAM
c) Góc ADB < góc ADC
d) CD < DB
Bài 8: Cho tam giác ABC vuông tại A. M là trung điểm của AC. Trên tia đối của MB lấy điểm E sao cho ME = MB. Chứng minh rằng:
a) BC > CE; CE ⊥ AC
b) Góc ABM > góc MBC
Cho tam giác ABC, vuông ở A , có góc B = 30 độ , vẽ tia phân giác CD , D thuộc AB , trên tia BC lấy điểm M sao CA =CM
a) Cm : Góc DBC = gócACD
b) CM : DA =DM
c) Qua B kẻ BM vuông góc với đường thẳng CD , BH vuông BC . CM BH = BM