Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. AM cắt DE tại H Chứng minh rằng: a) A AMNB =A AMC và suy ra AM L BC. b) A AHD = A AHE và DE || BC. c) Gọi I là trung điểm của EC. Tia MI cắt tia DE tại K. Chứng minh CK || ME
bài 10 Cho tam giác ABC cân tại A . Trên cạnh BC lấy các điểm BC lấy điểm D và E sao cho : BD=DE=EC. Gọi M là trung điểm của DE . 1) chứng minh AM vuông góc BC . 2) So sánh các độ dài AB,AD,AE,AC
Cho ΔABC vuông tại A, đường trung tuyến CM.
a) Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB, BM.
b) Trên tia đối của tia MC lấy điểm D sao cho MD = MC.
Chứng minh rằng ΔMAC = ΔMBD và AC = BD.
c) Chứng minh rằng AC + BC > 2CM.
d) Gọi K là điểm trên đoạn thẳng AM sao cho AM2/3AK. Gọi N là giao điểm của CK và
AD, I là giao điểm của BN và CD. Chứng minh rằng: CD = 3ID.
cho ΔABC vuông tại A . Đường phân giác BD (D ∈ AC). Kẻ DE ⊥ BC (E ∈ BC)
a) Chứng minh ΔABD = ΔEBD
b) Chứng minh ΔADE cân và BD là trung trực của AE
c) So sánh AD và DC
d) Kẻ AH vuông góc với BC (H ∈ BC), AH cắt BD tại F. Chứng minh: AH // DE và ΔAFD cân
e) Chứng minh AE là tia phân giác của góc AHC
Cho ΔABC có góc A = 90độ, trên cạnh AC lấy điểm E sao cho AE = 1/3 AC. trên tia đối của tia AE lấy điểm D sao cho AD = AE. Biết EB = EC
a) Chứng minh ΔABD = ΔABE và ΔBDE đều
b) Chứng minh BE là phân giác của ABC ?
c) Chứng minh BD vuông BC
d) Kẻ EK vuông BC tại K. Chứng minh KB = KC
e) Gọi F là giao điểm của EK và BA. Chứng minh BE vuông CF
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh AC lấy điểm D sao cho AB = AD. Trên tia đối của tia AB lấy điểm E sao cho AC = AE a) chứng minh tam giác ABC = tam giác ADE b) gọi M , N lần lượt là trung điểm của BC và DE , chứng minh AM = AN c) tính số đo của góc MAN
cho ΔABC .gọi M là trung điểm của BC,N là trung điểm của AC.Lấy E thuộc tia đối của NM sao cho NM=NE. C/m:
a)AE=MC suy ra AE//MC
b)ΔMEA = ΔABM
c)MN//AB
cho ΔABC(AB<AC) kẻ phân giác AD.Lấy E thuộc AC sao cho AB=AE;Lấy F thuộc tia đối của tia BA sao cho BF=EC. C/m;
a)ΔABD=ΔAED
b)DF=DC
c) F, D,E Thẳng hàng
d)AD vuông góc với FC
Cho ΔABC vuông tại A, có AB = 9cm, BC = 15 cm, AC=12 cm.
a) so sánh các góc của ΔABC
b) trên tia đối của AB lấy điểm D sao cho A là trung điểm của đoạn thẳng BD. Chừng minh ΔABC = ΔADC
c) E là trung điểm cạnh CD,BE cắt AC ở I. Chứng minh DI đi qua trung điểm cạnh BC