cho đa thức P(x)=ax2+bx+c và 2a+3b+6c= 0
a, Tính a,b,c theo P(0), P(1/2), P(1)
b, CMR: P(0), P(1/2), P(1) không thể cùng âm hoặc cùng dương
làm gấp nha
Baì 1 .cho đa thức P(x)=ax^2+bx+c biết 2a+3b+6c=0
a) Tính a,b,c thep P(0);P(1/2);P(1)
b) CMR P(0);P(1/2);P(1) không thể cùng âm hoặc cùng dương
c) CMR đa thức P(x) có 1 nghiệm dương bé hơn 1
Bài 2. Cho P(x)=ax^4+bx^3+1
Q(x)=(x-1)^2
Xác định a,b sao cho P(x) chia hết cho Q(x)
Bài 3.Cho P(x)=6x^4-7x^3+ax^2+3x+2
Q(x)=x^2-x+b
Xác định a,b sao cho P(x) chia hết cho Q(x)
cho f (x ) = ax2 + bx + c ( a, b,c khác 0 và a + 3b + 6c = 0
a, tìm a , b ,c theo f(0) , f ( 1 / 2 ) ,f ( - 1 )
b chứng minh f (0) , f( 1 / 2 ) , f( - 1) không thể cùng âm hoặc cungf dương
Cho đa thức f(x)=ax\(^2\) +bx+c Biết f(1)=f(-1)=0 Tính M= a^2019+b^2019+c^2019+2018
b1.
a) Cho đa thức P(x)= ax^2 + bx +c. CMR: nếu a+b+c=0 thì x=1 là 1 nghiệm của đa thức P(x)
b) tìm GTNN của biểu thức P(x) = Ix-2020I + Ix+2021I
mình đang cần gấp!
Cho đa thức Q(x) = ax^2 +bx + c. Biết 5a+b +2c = 0.
Chứng minh Q(2) . Q(-1) 0.
toàn bộ dùng bất đẳng thức svac-xơ hoặc bunhiacopski
bài 1: cho x,y,z>0. CMR:
a,1/x+1/y>=4/x+y
b,1/x+1/y+1/z>=9/x+y+z
bài 2: cho a,b,c>0. CMR:
a,a^2/(b+c)+b^2/(c+a)+c^2/(a+b)>=(a+b+c)/2
b, a^2/(2b+5c)+b^2/(2c+5a)+c^2/(2a+5b)>=(a+b+c)/7
bài 3: cho a,b,c>0. CMR a/(b+c)+b/(c+a)+c/(b+a)>=3/2
bài 4: cho a,b,c>0. CMR:
1/(b+2c)+b/(c+2a)+c/(a+2b)>=1
bài 5: cho a+b+c=1. Tìm min
a, P=1/a+4/b+9/c
b, Q+a^2/(b+3c)+b^2/(c+3a)+c^2/(a+3b)
bài 6: cho 3x^2+5y^2=3/79
tìm max, min A=x+4y
bài 7: tìm min P,Q,R
a, P=1/x+1/x;x>0
b, Q=x+1/x;x>=3
c, R=1/x+4/(1-x);0<x<1
bài 8: cho a,b,c là 3 cạnh một tam giác. CMR
a, a/(b+c-a)+b/(c+a-b)+c/(a+b-c)>=3
b, tìm min P
P=a/(b+c-a)+4b/(c+a-b)+9c/(a+b-c)
Cho 3 số a; b; c thỏa mãn: 1/ab + 1/ac + 1/bc > 0 và ab + ac + bc > 0. Chứng minh rằng 3 số a; b; c cùng âm hoặc cùng dương
1.Biết a-2b=5, hãy tính giá trị của biểu thức :P=(3a-2b)/(2a+5)+(3b-a)/(b-5)
2.Cho a+b+c=0.Tính giá trị của các biểu thức sau:
A=1/(a^2+b^2-c^2)+1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)