Cho đa thức \(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)
biết \(P\left(1\right)=10,P\left(2\right)=20,P\left(3\right)=30.Tính\)\(P\left(12\right)+P\left(-8\right)\)
Cho đa thức \(F\left(x\right)=x^3+ax^2+bx+c\)Biết F(x) chia x - 2 dư 5, chia cho x+1 dư 4. Tính giá trị của biểu thức \(A=\left(a^3+b^3\right)\left(a^5+c^5\right)\left(a^7+c^7\right)\)
Chắc các bạn lớp 8;9 sẽ cần
Xét đa thức $f\left(x\right)=ax^4+bx^3+cx^2+dx+e$ với $a\ne 0$
Khi đó
$ax^4+bx^3+cx^2+dx+e=a\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)$
$\Leftrightarrow ax^{4\: }+bx^3+cx^2+dx+e=a\left(x^2-Sx+P\right)\left(x^2-S'x+P'\right)$
Trong đó
$\hept{\begin{cases}\orbr{\begin{cases}S=x_1+x_2=x_1+x_3=x_1+x_4=x_2+x_3=x_2+x_4=x_3+x_4\\S'=x_3+x_4=x_2+x_4=x_2+x_3=x_1+x_4=x_1+x_3=x_1+x_2\end{cases}}\\\orbr{\begin{cases}P=x_1x_2=x_1x_3=x_1x_4=x_2x_3=x_2x_4=x_3x_4\\P'=x_3x_4=x_2x_4=x_2x_3=x_1x_4=x_1x_3=x_1x_2\end{cases}}\end{cases}}$
Khi tìm đc S;S';P;P' thì bài toán sẽ đc giải quyết
Quy trình ép tích
Bước 1
Bấm máy tính tìm các nghiệm $x_1;x_2;x_3;x_4$
Gán $x_1\rightarrow A;x_2\rightarrow B;x_3\rightarrow C;x_4\rightarrow D$
Dùng máy tính dò tìm S;S';P;P' hợp lí nhất có thể
Dự đoán $ax^4+bx^3+cx^2+dx+e=a\left(x^2-Sx+P\right)\left(x^2-S'x+P'\right)$
Bước 2: Ép tích theo kết quả biết trước
$ax^4+bx^3+cx^2+dx+e=a\left(x^2-Sx+P\right)\left(x^2-S'x+P'\right)$
Cho đa thức \(F\left(x\right)=x^3+ax^2+bx+c\)(Với\(a,b,c\in R\))
Biết đa thức F(x)chia cho đa thức x-2 thì dư 5, chia cho x+1 thì dư -4.
Hãy tính giá trị\(\left(a^3+b^3\right)\left(b^5+c^5\right)\left(c^7+a^7\right)\)?
Cho đa thức f(x)=\(x^3+ax^2+bx+c\)( với a,b,c thuộc R). Biết f(x) chia x-2 dư 5, chia x+1 dư -4. Tính giá trị \(\left(a^3+b^3\right)\left(b^5+c^5\right)\left(c^7+a^7\right)\)
Xác định các hệ số a,b,c để đa thức:
\(f\left(x\right)=x^5-2x^4-6x^3+ax^2+bx+c\) chia hết cho đa thức \(g\left(x\right)=\left(x^2-1\right)\left(x-3\right)\)
2.1) Cho đa thức: \(P\left(x\right)=6x^3-7x^2-16x+m\)
a) Tìm m để P(x) chia hết cho 2x+3
b) Với m vừa tìm được ở câu a, hãy tìm số dư khi chia P(x) cho 3x-2 và phân tích ra các thừa số bậc nhất
2.2) Cho đa thức: \(P\left(x\right)=x^5+ax^4+bx^3+cx^2+dx+e\)
Biết P(1)=1; P(2)=4; P(3)=16; P(5)=25. Tính P(6); P(7)?
GIẢI TOÁN CASIO
Bài 1: Thực hiện phép tính: A = 6712,53211 : 5,3112 + 166143,478 : 8,993
Bài 2: Tính giá trị biểu thức( làm tròn với 5 chữ số thập phân)
B= \(\frac{8,9^3+\sqrt[3]{91,526^7}:4\frac{1}{13}}{\left(635,4677+3,5:5\frac{1}{183}\right)^2}+\frac{6}{6+\frac{5}{11+\frac{7}{513}}}\)
Bài 3: Rút gọn biểu thức (kết quá viết dưới dạng phân số)
C= \(\frac{\left(1^4+6\right)\left(7^4+6\right)\left(13^4+6\right)\left(19^4+6\right)\left(25^4+6\right)\left(31^4+6\right)\left(37^4+6\right)}{\left(3^4+6\right)\left(9^4+6\right)\left(15^4+6\right)\left(21^4+6\right)\left(27^4+6\right)\left(33^4+6\right)\left(39^4+6\right)}\)
Phân Tích đa thức thành phân tử:
Câu 1: \(\left(ax+by\right)^2-\left(ay+bx\right)^2\)
Câu 2: \(\left(a^2+b^2-5\right)^2-4\left(ab+2\right)^2\)
Câu 3: \(x^2-x-12\)
Câu 4: \(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)