Do \(13a+b+2c=0\Rightarrow\left(4a-2b+c\right)+\left(9a+3b+c\right)=0\)
\(\Rightarrow4a-2b+c=-\left(9a+3b+c\right)\)
Do đó:
\(f\left(-2\right).f\left(3\right)=\left(4a-2b+c\right)\left(9a+3b+c\right)\)
\(=-\left(9a+3b+c\right).\left(9a+3b+c\right)\)
\(=-\left(9a+3b+c\right)^2\le0\) (đpcm)
\(f\left(-2\right)\cdot f\left(3\right)\)
\(=\left(4a-2b+c\right)\left(9a+3b+c\right)\)
\(=\left(13a+b+2c-9a-3b-c\right)\left(9a+3b+c\right)\)
\(=\left(-9a-3b-c\right)\left(9a+3b+c\right)=-\left(9a+3b+c\right)^2< =0\)