1. Cho đa thức \(f\left(x\right)=x^3-3x^2+9x+1964\). Chứng minh rằng tồn tại số nguyên \(a\) sao cho \(f\left(a\right)⋮3^{2014}\)
2. Chứng minh rằng với mọi \(a\inℤ\), phương trình \(x^4-2007x^3+\left(2006+a\right)x^2-2005x+a=0\) không thể có 2 nghiệm nguyên phân biệt.
3. Tìm tất cả các số nguyên dương \(n\) sao cho \(2^n-1|3^n-1\)
1.lim(\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}\))
2.Tìm tất cả các giá trị của a sao cho lim\(\frac{4^n+a.5^n}{\left(2a-1\right).5^n+2^n}\)=1
3. Cho \(a\in R\)và lim(\(\sqrt{n^2+an+4}-n+1=5\)).Tìm a
4.Cho\(Lim_{(x->2)}f\left(x\right)=5\). Tìm giới hạn \(lim_{\left(x->2\right)}\sqrt{[f\left(x\right)-3]x}\)
Cho đa thức f(x) = ( 1 + 3 x ) n = a 0 + a 1 x + a 2 x 2 + . . . . + a n x n ( n ∈ ℕ * ) . Tìm hệ số a 3 , biết rằng: a 1 + 2 a 2 + . . . . + n a n = 49152n
A. a 3 = 945
B. a 3 = 252
C. a 3 = 5670
D. a 3 = 1512
Câu 1: Tính giới hạn
a, lim\(\dfrac{2-5^{n-2}}{3^n=2.5^n}\) b,lim\(\dfrac{2-5^{n+2}}{3^n-2.5^n}\)
Câu 2 :CMR :\(x^4+x^3-3x^2+x+1=0\) có ít nhất một nghiệm âm lớn hơn -1
Câu 3: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a và các cạnh bên đều bằng a. Gọi M,N lần lượt là trung điểm của AD và SD. Tìm số đo góc giữa 2 đường thẳng MN và SC
1/ Giải phương trình sau:
\(tan^2\left(x+\dfrac{\pi}{3}\right)+\left(\sqrt{3}-1\right)tan\left(x+\dfrac{\pi}{3}\right)-\sqrt{3}=0\)
2/ Tìm hệ số của số hạng chứa \(x^{26}\) trong khai triển \(\left(\dfrac{1}{x^4}+x^7\right)^n\) . Biết \(C^2_{n+2}-4C^n_{n+1}=2\left(n+1\right)\) (n ∈ N* ; x > 0)
Biết rằng trong khai triển trên tổng hệ số của ba số hạng đầu bằng 161. Tìm a
Gọi x là hệ số không chứa x trong khai triển nhị thức Niu – tơn
x 2 - 2 x n = C n 0 x 2 n + C n 1 x 2 n - 1 - 2 x + . . . + C n n - 1 x 2 - 2 x n - 1 + C n n - 2 x n n ∈ ℕ *
Biết rằng trong khai triển trên tổng hệ số của ba số hạng đầu bằng 161. Tìm a
A. 11520
B. 11250
C. 12150
D. 10125
Cho đa thức \(P\left(x\right)=x^n+a_{n-1}x^{n-1}+...+a_1x+1\) có các hệ số không âm. CMR nếu \(P\left(x\right)\) có \(n\) nghiệm thực thì \(P\left(2\right)\ge3^n\)
Gọi a là hệ số của x 5 3 trong khai triển x 2 3 + 2 x 3 n , x > 0 biết rằng 2 n - 4 C n n - 2 - C n - 2 1 - n = C n - 1 n - 2
A. a = 96069
B. a = 96906
C. a = 96960
D. a = 96096
F(x)\(\hept{\begin{cases}\frac{\sqrt{ax+1}\sqrt[3]{bx+1}-1}{x},\\a+b,x=0\end{cases}x\ne0}\)
cho a và b là các số thực khác 0 tìm hệ thức liên hệ giữa a và b dể hàm số sau liên tục tại x=0
Cho f(x) là hàm đa thức thỏa \(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}=a\left(a\in R\right)\) và tồn tại \(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{f\left(x\right)+2x+1}-x}{x^2-4}=T\left(T\in R\right).\) Tìm T theo a.