ĐKXĐ: ...
\(D=\left(\frac{2\sqrt{x}}{x\left(\sqrt{x}-1\right)+\sqrt{x}-1}-\frac{1}{\sqrt{x-1}}\right):\left(\frac{x+\sqrt{x}+1}{x+1}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{x+1}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\left(\frac{x+1}{x+\sqrt{x}+1}\right)\)
\(=\frac{\left(2\sqrt{x}-x-1\right)}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\frac{\left(x+1\right)}{\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{1-\sqrt{x}}{x+\sqrt{x}+1}\)
b/ Do \(x+\sqrt{x}+1=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\) Để \(D>0\Leftrightarrow1-\sqrt{x}>0\Leftrightarrow\sqrt{x}< 1\Rightarrow0\le x< 1\)