Cho tam giác AEC vuông tại A. Từ điểm O trên cạnh BE kẻ đường vuông góc với BE, cắt tia đối của tia AB ở F, cắt AB ở D. Tia phân giác của góc E cắt AB, CD lần lượt ở M,P, tia phân giác của góc F cắt BC, DA lần lượt ở N và Q.
Chứng minh:
a) EM vuông góc với FN.
b) Tứ giác MPNQ là hình thoi
Cho tam giác ABC vuông tại A, AH là đường cao. D, E lần lượt là trung điểm của các đoạn thẳng AB, AH. Đường thẳng vuông góc AB taị D cắt CE ở F. Chứng minh rằng tam giác BCF vuông
Cho tam giác nhọn ABC, có AB = 12cm , AC = 15 cm . Trên các cạnh
AB và AC lấy các điểm D và E sao cho AD = 4 cm, AE = 5cm
a, Chứng minh rằng: DE // BC, từ đó suy ra: Δ ADE đồng dạng với ΔABC?
b, Từ E kẻ EF // AB (F thuộc BC). Tứ giác BDEF là hình gì? Từ đó suy ra: ΔCEF đồng dạng ΔEAD?
c, Tính CF và FB khi biết BC = 18 cm
Cho tam giác ABC vuông ở C có AC=9cm, AB=15cm. Từ trung điểm M của AB kẻ đường thẳng vuông góc với AB, cắt BC và AC lần lượt ở P và Q.
a) CM : tam giác ABC đồng dạng với tam giác AQM; từ đó suy ra AB mũ 2 =2.AC.AQ
b) Tính PQ.
c) tia AP cắt BQ tại N. CM : CN song song với AB.
d) tính diện tích ABNC.
Cho tam giác ABC vuông tại A , H là một điểm tùy ý trên cạnh AB.Qua điểm H , kẻ đường thẳng d vuông góc BC tại M và cắt AC kéo dài tại O.
a) CMR: tam giác ABC đồng dạng tam giác MOC
b) CMR: BH.BA=BM.BC
c) Cho AB=8cm,AC=6cm.Diện tích tam giác BOC=250cm2. Tính diện tích tam giác ACM
d,Tia CH cắt OB tại k.CMR CK vuông góc OB
Cho hình chữ nhật ABCD, kẻ BH vuông góc với đường chéo AC (H thuộc AC).
a) Chứng minh tam giác ABH đồng dạng với tam giác ACB
b) Cho AB = 7cm, BC = 24cm. Tính độ dài BH
c) Gọi O là giao điểm của AC và BD, K là trung điểm của AB; BH cắt OK tại G, đường thẳng AG cắt OB tại L. Chứng minh LH // AB.
cho \(\Delta\)ABC vuông tại A có AB>AC . Lấy M là 1 điểm tùy ý . Qua M kể đường thẳng vuông góc với BC và cắt AB tại I ,cắt AC tại D
a/ CM :\(\Delta ABC\sim\Delta MDC\)
b/ CM : BI.BA=BM.BC
c/ CM : góc BAM=góc ICB từ đó CM: AB là tia phân giác góc MAK (\(CI\cap BD\) tại k)
d/ cho AB=8cm và AC=6 cm . Khi AM là tia phân giác trong\(\Delta ABC\) hãy tính diện tích tứ giác AMBD
tam giác abc nhọn các đường cao bm và cn cắt nha tại h i k lần lượt là trng điểm của bc và mn chúng minh góc bai bằng góc cak
tam giác ABC vuông tại A , M là điểm trên BC . MD là đường thẳng kẻ từ M đền AB .ME vuông góc với AC . Gọi O là trung điểm của AM Chứng minh D và E đối xứng qua O . Tứ giác BDEC có 2 góc đối bù nhau nếu AM vuông góc với DC . Xác định vị trí điểm M trên BC để 2AM+3DE đạt giá trị nhỏ nhất Gọi AH là đường cao , AK là đường trung tuyến . Kẻ Hi vuông góc với AB , AC vuông góc với HF . cm Ak vuông góc với IF Cm góc DHF bằng 90 độ