cho SABCD đáy hình thang tâm O (AD//BC). gọi M là trung điểm SA, AD=2BC
a.cmr: BM // (SCD)
b.gọi k là điểm trên SB sao cho SK=2BK. cmr: OK//(SAD)
Cho hình chóp SABCD có đáy ABCD là hình thang, đáy lớn là AD. Gọi M,N,P lần lượt là trung điểm của AB,SA,SD.
a. Tìm giao tuyến của 2 mp (SAB) và (SCD)
b. chứng minh NP // (SBC)
c. tìm giao điểm của SC với mp(MNP)
Cho hình chóp S.ABCD có đáy ABCD là hình thang, AD là đáy lớn. Gọi M,N là trung điểm lần lượt của BC và CD.Tìm giao tuyến của 2 mặt phẳng:
a,(SAC) và (SBD)
b,(SMN) và (SAD)
c,(SAB) và (SCD)
d,(SMN) và (SAC)
e,(SMN) và (SAB)
Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M , N , P lần lượt là trung điểm SA , SB , SC
a ) Tìm giao tuyến của ( DMP ) và ( ABCD )
b ) Tìm giao tuyến của ( DMP ) và ( SBC )
c ) Tìm giao điểm của SB và ( DMP )
d ) Chứng minh MP / ( ABCD ) và MN / ( SCD )
e ) Cm : ( MNP ) // ( ABCD ) .
f ) Gọi Q là trung điểm MN . Chứng minh PQ / ( ABCD )
g ) Tìm thiết diện của ( MNP ) với S.ABCD
Cho hình chóp S.ABCD, ABCD là hình bình hành đáy là tâm O. M là trung điểm của SB, N thuộc SC sao cho SN=2NC.
Tìm giao
a) (SAC) và (SBD)
b) (DMN) và (SAB); (DMN và (SAD)
c) Tìm thiết diện của (OMN)
d) P là trung điểm của AD/ Tìm giao SA và (MNP)
Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình thang có
AD || BC, AD = 2BC. Gọi M và N lần lượt là trung điểm của các cạnh
SC và BC.
a) Tìm giao tuyến của hai mp (SAB) và (SCD).
b) Chứng minh MN || (SBD).
c) Tìm giao điểm của SD với mp (AMN)
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy nhỏ AB = n, đáy lớn CD = m (m, n là các số thực dương, m > n). Các cạnh bên thỏa mãn SA = SB, SC = SD. Gọi O là giao điểm hai đường chéo AC và BD. Lấy điểm I trên đoạn SO sao cho IS/IO = k. Gọi (alpha) là mặt phẳng đi qua AI và song song với CD. Tìm điều kiện của k để thiết diện của hình chóp S.ABCD với mặt phẳng (alpha) là một hình chữ nhật.
Cho hình chóp SABCD, có đáy ABCD là một hình bình hành tâm O.
Gọi I, K lần lượt là trung điểm của SB và SD.
a) Tìm giao tuyến của (SAC) và (SBD).
b) Tìm giao điểm J của SA với (CKB).
c) Tìm giao tuyến của (OIA) và (SCD)
Đề toán: Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành tâm O.
a/ Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD).
b/ Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC).
c/ Gọi M, N lần lượt là trung điểm của SA và SB, K là một điểm nằm giữa B và C. Tìm thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNK).