\(Q=16x^2y^2+12x^3+12y^3+34xy\)
\(A=16x^2y^2+34xy+12\left(x+y\right)^3-36xy\left(x+y\right)\)
\(=16x^2y^2-2xy+12\)
Đặt \(xy=t\), do \(x;y\ge0\Rightarrow t\ge0\)
Mặt khác \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow0\le t\le\frac{1}{4}\)
\(\Rightarrow A=16t^2-2t+12=\left(4t-1\right)\left(4t+\frac{1}{2}\right)+\frac{25}{2}\)
Do \(0\le t\le\frac{1}{4}\) \(\Rightarrow\left(4t-1\right)\left(4t+\frac{1}{2}\right)\le0\)
\(\Rightarrow A\le\frac{25}{2}\Rightarrow A_{max}=\frac{25}{2}\) khi \(t=\frac{1}{4}\) hay \(x=y=\frac{1}{2}\)