Violympic toán 9

Trương Thị Hải Anh

Cho các số dương a, b, c chứng minh rằng:

\(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\)

Akai Haruma
14 tháng 3 2018 lúc 15:50

Lời giải:

Ta có: \(\text{VT}=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^2}{b}-a+b+\frac{b^2}{c}-b+c+\frac{c^2}{a}-c+a\)

\(=\frac{a^2-ab+b^2}{b}+\frac{b^2-bc+c^2}{c}+\frac{c^2-ca+a^2}{a}\)

Áp dụng BĐT AM-GM:

\(\frac{a^2-ab+b^2}{b}+b\geq 2\sqrt{a^2-ab+b^2}\)

\(\frac{b^2-bc+c^2}{c}+c\geq 2\sqrt{b^2-bc+c^2}\)

\(\frac{c^2-ca+a^2}{a}+a\geq 2\sqrt{c^2-ca+a^2}\)

Cộng theo vế:

\(\Rightarrow \text{VT}+(a+b+c)\geq 2(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2})(1)\)

Lại có:

\(\sqrt{a^2-ab+b^2}=\sqrt{\frac{3}{4}(a-b)^2+\frac{1}{4}(a+b)^2}\geq \sqrt{\frac{1}{4}(a+b)^2}=\frac{a+b}{2}\)

TT: \(\sqrt{b^2-bc+c^2}\geq \frac{b+c}{2}; \sqrt{c^2-ca+a^2}\geq \frac{c+a}{2}\)

Suy ra: \(\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\geq a+b+c(2)\)

Từ \((1);(2)\Rightarrow \text{VT}\geq \sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\) (đpcm)

Dấu bằng xảy ra khi \(a=b=c\)

Bình luận (2)

Các câu hỏi tương tự
Vũ Tiền Châu
Xem chi tiết
ZoZ - Kudo vs Conan - Zo...
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
dia fic
Xem chi tiết